login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363340
a(n) is the smallest positive integer such that a(n) * n is the sum of two squares.
4
1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 11, 3, 1, 7, 3, 1, 1, 1, 19, 1, 21, 11, 23, 3, 1, 1, 3, 7, 1, 3, 31, 1, 33, 1, 7, 1, 1, 19, 3, 1, 1, 21, 43, 11, 1, 23, 47, 3, 1, 1, 3, 1, 1, 3, 11, 7, 57, 1, 59, 3, 1, 31, 7, 1, 1, 33, 67, 1, 69, 7, 71, 1, 1, 1, 3, 19, 77, 3, 79
OFFSET
1,3
COMMENTS
Using Fermat's two-squares theorem it is easy to see that a(n) is the product of all prime factors of n that are congruent to 3 modulo 4 and have an odd exponent.
This implies that a(n) is also the smallest positive integer such that n / a(n) is the sum of two squares.
Equivalently, a(n) is the product of all primes of the form 4k+3 that divide the squarefree part of n. If we use the squarefree kernel instead, we get A170819. - Peter Munn, Aug 06 2023
FORMULA
Multiplicative with a(p^e) = p if p^e == 3 (mod 4), otherwise 1. - Peter Munn, Jul 03 2023
From Peter Munn, Aug 06 2023: (Start)
a(n) = A007913(A097706(n)) = A097706(A007913(n)).
a(n) == A000265(n) (mod 4).
a(A059897(n, k)) = A059897(a(n), a(k)).
(End)
EXAMPLE
a(1) = a(2) = 1 since 1 and 2 are sums of two squares.
a(3) = 3 since 3 and 6 are not sums of two squares but 3*3 is.
a(6) = 3 since 6 and 12 are not sums of two squares but 3*6 = 3^2 + 3^2.
PROG
(PARI) a(n) = my(r=1); foreach(mattranspose(factor(n)), f, if(f[1]%4==3&&f[2]%2==1, r*=f[1])); r
CROSSREFS
Cf. A001481 (positions of 1's), A167181 (range of values).
Fixed points: A167181.
Sequence in context: A252983 A089312 A246674 * A058735 A107294 A161788
KEYWORD
nonn,easy,mult
AUTHOR
Peter Schorn, May 28 2023
STATUS
approved