OFFSET
0,4
COMMENTS
a(n) can be also computed by replacing all consecutive runs of zeros in the binary expansion of n with * (multiplication sign), and then performing that multiplication, still in binary, after which the result is converted into decimal. See the example below.
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..8192
EXAMPLE
115 is '1110011' in binary. The run lengths of 1-runs are 2 and 3, thus a(115) = A000225(2) * A000225(3) = ((2^2)-1) * ((2^3)-1) = 3*7 = 21.
The same result can be also obtained more directly, by realizing that '111' and '11' are the binary representations of 7 and 3, and 7*3 = 21.
From Omar E. Pol, Feb 15 2015: (Start)
Written as an irregular triangle in which row lengths are the terms of A011782:
1;
1;
1,3;
1,1,3,7;
1,1,1,3,3,3,7,15;
1,1,1,3,1,1,3,7,3,3,3,9,7,7,15,31;
1,1,1,3,1,1,3,7,1,1,1,3,3,3,7,15,3,3,3,9,3,3,9,21,7,7,7,21,15,15,31,63;
...
Right border gives 1 together with the positive terms of A000225.
(End)
MATHEMATICA
f[n_] := 2^n - 1; Table[Times @@ (f[Length[#]]&) /@ Select[ Split[ IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 100}] (* Jean-François Alcover, Jul 11 2017 *)
PROG
(MIT/GNU Scheme)
(define (A246674 n) (fold-left (lambda (a r) (* a (A000225 r))) 1 (bisect (reverse (binexp->runcount1list n)) (- 1 (modulo n 2)))))
(define (A000079 n) (expt 2 n))
;; Other functions as in A227349.
(Python)
# uses RLT function in A278159
def A246674(n): return RLT(n, lambda m: 2**m-1) # Chai Wah Wu, Feb 04 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Sep 08 2014
STATUS
approved