OFFSET
0,8
COMMENTS
LINKS
Elena Barcucci, Alberto Del Lungo, and Renzo Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
FORMULA
The row generating polynomials P[n](t) are given by P[n](t)=Q[n](t,1,t,1), where Q[n](t,s,x,y) are defined by Q[n](t,s,x,y)=Q[n-1](t,s,y,x)+[floor(n/2)*x+floor((n-1)/2)*y]Q[n-1](t,s,t,s) for n>=2 and Q[0](t,s,x,y)=1, Q[1](t,s,x,y]=x.
EXAMPLE
T(2,0)=1, T(2,1)=0 and T(2,2)=1 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having 0 and 2 columns of odd length, respectively.
Triangle starts:
1;
0, 1;
1, 0, 1;
1, 3, 1, 1;
3, 6, 9, 4, 2;
9, 28, 36, 30, 13, 4;
...
MAPLE
Q[0]:=1: Q[1]:=x: for n from 2 to 10 do Q[n]:=expand(subs({x=y, y=x}, Q[n-1])+(floor(n/2)*x+floor((n-1)/2)*y)*subs({x=t, y=s}, Q[n-1])) od: for n from 0 to 10 do P[n]:=sort(subs({x=t, y=1, s=1}, Q[n])) od: for n from 0 to 10 do seq(coeff(P[n], t, j), j=0..n) od; # yields sequence in triangular form
MATHEMATICA
Q[0] = 1; Q[1] = x;
Do[Q[n] = Expand[ReplaceAll[Q[n-1], {x -> y, y -> x}] + (Floor[n/2]*x + Floor[(n-1)/2]*y)*ReplaceAll[Q[n-1], {x -> t, y -> s}]] , {n, 2, 10}];
Do[P[n] = ReplaceAll[Q[n], {x -> t, y -> 1, s -> 1}], {n, 0, 10}];
Table[Coefficient[P[n], t, j], {n, 0, 10}, {j, 0, n}] // Flatten (* Jean-François Alcover, Aug 19 2024, after Maple program *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 20 2006
STATUS
approved