login
A121745
Triangle read by rows: T(n,k) is the number of deco polyominoes of height n and having k columns of odd length (0<=k<=n). A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
3
1, 0, 1, 1, 0, 1, 1, 3, 1, 1, 3, 6, 9, 4, 2, 9, 28, 36, 30, 13, 4, 27, 107, 195, 198, 130, 51, 12, 117, 532, 1106, 1371, 1096, 585, 197, 36, 459, 2573, 6547, 9914, 9886, 6733, 3132, 932, 144, 2421, 15139, 43606, 76017, 88793, 72689, 42200, 17027, 4412, 576, 11979, 87362, 293146, 597856, 824343, 807930, 574837, 296296, 107231, 24940, 2880
OFFSET
0,8
COMMENTS
Row sums are the factorials (A000142).
T(n,0) = A121746(n).
Sum_{k=0..n} k * T(n,k) = A121747(n).
LINKS
Elena Barcucci, Alberto Del Lungo, and Renzo Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
FORMULA
The row generating polynomials P[n](t) are given by P[n](t)=Q[n](t,1,t,1), where Q[n](t,s,x,y) are defined by Q[n](t,s,x,y)=Q[n-1](t,s,y,x)+[floor(n/2)*x+floor((n-1)/2)*y]Q[n-1](t,s,t,s) for n>=2 and Q[0](t,s,x,y)=1, Q[1](t,s,x,y]=x.
EXAMPLE
T(2,0)=1, T(2,1)=0 and T(2,2)=1 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having 0 and 2 columns of odd length, respectively.
Triangle starts:
1;
0, 1;
1, 0, 1;
1, 3, 1, 1;
3, 6, 9, 4, 2;
9, 28, 36, 30, 13, 4;
...
MAPLE
Q[0]:=1: Q[1]:=x: for n from 2 to 10 do Q[n]:=expand(subs({x=y, y=x}, Q[n-1])+(floor(n/2)*x+floor((n-1)/2)*y)*subs({x=t, y=s}, Q[n-1])) od: for n from 0 to 10 do P[n]:=sort(subs({x=t, y=1, s=1}, Q[n])) od: for n from 0 to 10 do seq(coeff(P[n], t, j), j=0..n) od; # yields sequence in triangular form
MATHEMATICA
Q[0] = 1; Q[1] = x;
Do[Q[n] = Expand[ReplaceAll[Q[n-1], {x -> y, y -> x}] + (Floor[n/2]*x + Floor[(n-1)/2]*y)*ReplaceAll[Q[n-1], {x -> t, y -> s}]] , {n, 2, 10}];
Do[P[n] = ReplaceAll[Q[n], {x -> t, y -> 1, s -> 1}], {n, 0, 10}];
Table[Coefficient[P[n], t, j], {n, 0, 10}, {j, 0, n}] // Flatten (* Jean-François Alcover, Aug 19 2024, after Maple program *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 20 2006
STATUS
approved