login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253223
T(n,k) = number of n X k nonnegative integer arrays with upper left 0 and lower right its king-move distance away minus 2 and every value within 2 of its king move distance from the upper left and every value increasing by 0 or 1 with every step right, diagonally se or down.
7
0, 0, 0, 1, 0, 1, 3, 1, 1, 3, 6, 9, 1, 9, 6, 10, 25, 19, 19, 25, 10, 15, 49, 102, 19, 102, 49, 15, 21, 81, 263, 268, 268, 263, 81, 21, 28, 121, 504, 1249, 268, 1249, 504, 121, 28, 36, 169, 825, 3140, 3568, 3568, 3140, 825, 169, 36, 45, 225, 1226, 5986, 16028, 3568, 16028
OFFSET
1,7
LINKS
Robert Dougherty-Bliss, Experimental Methods in Number Theory and Combinatorics, Ph. D. Dissertation, Rutgers Univ. (2024). See p. 21.
Robert Dougherty-Bliss and Manuel Kauers, Hardinian Arrays, arXiv:2309.00487 [math.CO], 2023.Hardinian Arrays, El. J. Combinat. 31 (2) (2024) #P2.9
FORMULA
Empirical for column k:
k=1: a(n) = (1/2)*n^2 - (3/2)*n + 1.
k=2: a(n) = 4*n^2 - 20*n + 25 for n>2.
k=3: a(n) = 40*n^2 - 279*n + 497 for n>4.
k=4: a(n) = 480*n^2 - 4354*n + 10098 for n>6.
k=5: a(n) = 6400*n^2 - 71990*n + 206573 for n>8.
k=6: a(n) = 90112*n^2 - 1212288*n + 4150790 for n>10.
k=7: a(n) = 1306624*n^2 - 20460244*n + 81385043 for n>12.
EXAMPLE
Table starts:
..0...0....1.....3......6......10......15.......21........28........36
..0...0....1.....9.....25......49......81......121.......169.......225
..1...1....1....19....102.....263.....504......825......1226......1707
..3...9...19....19....268....1249....3140.....5986......9792.....14558
..6..25..102...268....268....3568...16028....40238.....77063....126673
.10..49..263..1249...3568....3568...47698...213155....538444...1039060
.15..81..504..3140..16028...47698...47698...649712...2913793...7415837
.21.121..825..5986..40238..213155..649712...649712...9023385..40680959
.28.169.1226..9792..77063..538444.2913793..9023385...9023385.127419681
.36.225.1707.14558.126673.1039060.7415837.40680959.127419681.127419681
Some solutions for n=4 and k=4:
0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1
0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1
1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CROSSREFS
Column 1 is A000217(n-2).
Column 2 is A016754(n-3).
Sequence in context: A365968 A156710 A114588 * A121745 A252983 A089312
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 29 2014
STATUS
approved