OFFSET
0,4
COMMENTS
The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g. 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product).
LINKS
FORMULA
EXAMPLE
From Omar E. Pol, Feb 15 2015: (Start)
Written as an irregular triangle in which row lengths are the terms of A011782:
1;
1;
1,2;
1,1,2,5;
1,1,1,2,2,2,5,14;
1,1,1,2,1,1,2,5,2,2,2,4,5,5,14,42;
1,1,1,2,1,1,2,5,1,1,1,2,2,2,5,14,2,2,2,4,2,2,4,10,5,5,5,10,14,14,42,132;
...
Right border gives the Catalan numbers. This is simply a restatement of the theorem that this sequence is the Run Length Transform of A000108.
(End)
MAPLE
Cat:=n->binomial(2*n, n)/(n+1);
ans:=[];
for n from 0 to 100 do lis:=[]; t1:=convert(n, base, 2); L1:=nops(t1); out1:=1; c:=0;
for i from 1 to L1 do
if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1;
elif out1 = 0 and t1[i] = 1 then c:=c+1;
elif out1 = 1 and t1[i] = 0 then c:=c;
elif out1 = 0 and t1[i] = 0 then lis:=[c, op(lis)]; out1:=1; c:=0;
fi;
if i = L1 and c>0 then lis:=[c, op(lis)]; fi;
od:
a:=mul(Cat(i), i in lis);
ans:=[op(ans), a];
od:
ans;
MATHEMATICA
f = CatalanNumber; Table[Times @@ (f[Length[#]]&) /@ Select[ Split[ IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 87}] (* Jean-François Alcover, Jul 11 2017 *)
PROG
(Python)
from operator import mul
from functools import reduce
from gmpy2 import divexact
from re import split
def A246596(n):
s, c = bin(n)[2:], [1, 1]
for m in range(1, len(s)):
c.append(divexact(c[-1]*(4*m+2), (m+2)))
return reduce(mul, (c[len(d)] for d in split('0+', s))) if n > 0 else 1
# Chai Wah Wu, Sep 07 2014
(Sage) # uses[RLT from A246660]
A246596_list = lambda len: RLT(lambda n: binomial(2*n, n)/(n+1), len)
A246596_list(88) # Peter Luschny, Sep 07 2014
(Scheme) ; using MIT/GNU Scheme
(define (A246596 n) (fold-left (lambda (a r) (* a (A000108 r))) 1 (bisect (reverse (binexp->runcount1list n)) (- 1 (modulo n 2)))))
(define A000108 (EIGEN-CONVOLUTION 1 *))
;; Note: EIGEN-CONVOLUTION can be found from my IntSeq-library and other functions are as in A227349. - Antti Karttunen, Sep 08 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 06 2014
STATUS
approved