login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326566
Number of covering antichains of subsets of {1..n} with equal edge-sums.
7
2, 1, 1, 2, 4, 14, 92, 1320, 73584, 51913039
OFFSET
0,1
COMMENTS
An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.
EXAMPLE
The a(1) = 1 through a(5) = 14 antichains:
{{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2,3,4,5}}
{{3},{1,2}} {{1,4},{2,3}} {{1,2,5},{1,3,4}}
{{2,4},{1,2,3}} {{1,3,5},{2,3,4}}
{{3,4},{1,2,4}} {{1,4,5},{2,3,5}}
{{5},{1,4},{2,3}}
{{1,4,5},{1,2,3,4}}
{{2,3,5},{1,2,3,4}}
{{2,4,5},{1,2,3,5}}
{{3,4,5},{1,2,4,5}}
{{1,5},{2,4},{1,2,3}}
{{2,5},{3,4},{1,2,4}}
{{3,5},{1,2,5},{1,3,4}}
{{4,5},{1,3,5},{2,3,4}}
{{1,4,5},{2,3,5},{1,2,3,4}}
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
cleq[n_]:=Select[stableSets[Subsets[Range[n]], SubsetQ[#1, #2]||Total[#1]!=Total[#2]&], Union@@#==Range[n]&];
Table[Length[cleq[n]], {n, 0, 5}]
CROSSREFS
The non-covering case is A326574.
Sequence in context: A024957 A153914 A151893 * A213953 A000361 A246596
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 13 2019
EXTENSIONS
a(9) from Andrew Howroyd, Aug 14 2019
STATUS
approved