OFFSET
1,3
COMMENTS
a(n) = 2 <=> |{d|n*(n+1)/2 : d>=n}| = 2. - Alois P. Heinz, Sep 03 2009
LINKS
EXAMPLE
a(7) = 6 since we have 1234567, 16/25/34/7, 167/2345, 257/1346, 347/1256, 356/1247.
From Gus Wiseman, Jul 13 2019: (Start)
The a(6) = 2 through a(9) = 11 set partitions with equal block-sums:
{123456} {1234567} {12345678} {123456789}
{16}{25}{34} {1247}{356} {12348}{567} {12345}{69}{78}
{1256}{347} {12357}{468} {1239}{456}{78}
{1346}{257} {12456}{378} {1248}{357}{69}
{167}{2345} {1278}{3456} {1257}{348}{69}
{16}{25}{34}{7} {1368}{2457} {1347}{258}{69}
{1458}{2367} {1356}{249}{78}
{1467}{2358} {159}{2346}{78}
{1236}{48}{57} {159}{267}{348}
{138}{246}{57} {168}{249}{357}
{156}{237}{48} {18}{27}{36}{45}{9}
{18}{27}{36}{45}
(End)
MAPLE
with(numtheory): b:= proc() option remember; local i, j, t; `if`(args[1]=0, `if`(nargs=2, 1, b(args[t] $t=2..nargs)), add(`if`(args[j] -args[nargs] <0, 0, b(sort([seq(args[i] -`if`(i=j, args[nargs], 0), i=1..nargs-1)])[], args[nargs]-1)), j=1..nargs-1)) end: a:= proc(n) local i, m, x; m:= n*(n+1)/2; 1+ add(b(i$(m/i), n)/(m/i)!, i=[select(x-> x>=n, divisors(m) minus {m})[]]) end: seq(a(n), n=1..25); # Alois P. Heinz, Sep 03 2009
MATHEMATICA
b[args_List] := b[args] = If[args[[1]] == 0, If[Length[args] == 2, 1, b[Rest[args]]], Sum[If[args[[j]] - args[[-1]] < 0, 0, b[Sort[Join[Table[ args[[i]] - If[i == j, args[[-1]], 0], {i, 1, Length[args]-1}]]], {args[[-1]]-1}]], {j, 1, Length[args]-1}]]; b[a1_List, a2_List] := b[Join[a1, a2]];
a[n_] := a[n] = With[{m = n*(n+1)/2}, 1+Sum[b[Append[Array[i&, m/i], n]] / (m/i)!, {i, Select[Divisors[m] ~Complement~ {m}, # >= n &]}]];
Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 25}] (* Jean-François Alcover, Mar 22 2017, after Alois P. Heinz *)
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
Table[Length[Select[sps[Range[n]], SameQ@@Total/@#&]], {n, 0, 10}] (* Gus Wiseman, Jul 13 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from John W. Layman, Mar 18 2002
a(19)-a(33) from Alois P. Heinz, Sep 03 2009
a(34) from Alois P. Heinz, May 24 2015
a(35)-a(38) from Max Alekseyev, Feb 15 2024
STATUS
approved