OFFSET
0,22
LINKS
Alois P. Heinz, Rows n = 0..34, flattened
Dorin Andrica and Ovidiu Bagdasar, On k-partitions of multisets with equal sums, The Ramanujan J. (2021) Vol. 55, 421-435.
Wikipedia, Partition of a set
EXAMPLE
T(8,1) = 1: 12345678.
T(8,2) = 7: 12348|567, 12357|468, 12456|378, 1278|3456, 1368|2457, 1458|2367, 1467|2358.
T(8,3) = 3: 1236|48|57, 138|246|57, 156|237|48.
T(8,4) = 1: 18|27|36|45.
T(9,3) = 9: 12345|69|78, 1239|456|78, 1248|357|69, 1257|348|69, 1347|258|69, 1356|249|78, 159|2346|78, 168|249|357, 159|267|348.
Triangle T(n,k) begins:
00 : 1;
01 : 0, 1;
02 : 0, 1;
03 : 0, 1, 1;
04 : 0, 1, 1;
05 : 0, 1, 0, 1;
06 : 0, 1, 0, 1;
07 : 0, 1, 4, 0, 1;
08 : 0, 1, 7, 3, 1;
09 : 0, 1, 0, 9, 0, 1;
10 : 0, 1, 0, 0, 0, 1;
11 : 0, 1, 35, 43, 0, 0, 1;
12 : 0, 1, 62, 102, 0, 0, 1;
13 : 0, 1, 0, 0, 0, 0, 0, 1;
14 : 0, 1, 0, 595, 0, 68, 0, 1;
15 : 0, 1, 361, 1480, 871, 187, 17, 0, 1;
MATHEMATICA
Needs["Combinatorica`"]; T[n_, k_] := Count[(Equal @@ (Total /@ #)&) /@ KSetPartitions[n, k], True]; Table[row = Table[T[n, k], {k, 0, Ceiling[n/2]}]; Print[n, " ", row]; row, {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 20 2017 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Aug 06 2016
STATUS
approved