login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275714
Number T(n,k) of set partitions of [n] into k blocks with equal element sum; triangle T(n,k), n>=0, 0<=k<=ceiling(n/2), read by rows.
17
1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 4, 0, 1, 0, 1, 7, 3, 1, 0, 1, 0, 9, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 35, 43, 0, 0, 1, 0, 1, 62, 102, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 595, 0, 68, 0, 1, 0, 1, 361, 1480, 871, 187, 17, 0, 1
OFFSET
0,22
LINKS
Dorin Andrica and Ovidiu Bagdasar, On k-partitions of multisets with equal sums, The Ramanujan J. (2021) Vol. 55, 421-435.
EXAMPLE
T(8,1) = 1: 12345678.
T(8,2) = 7: 12348|567, 12357|468, 12456|378, 1278|3456, 1368|2457, 1458|2367, 1467|2358.
T(8,3) = 3: 1236|48|57, 138|246|57, 156|237|48.
T(8,4) = 1: 18|27|36|45.
T(9,3) = 9: 12345|69|78, 1239|456|78, 1248|357|69, 1257|348|69, 1347|258|69, 1356|249|78, 159|2346|78, 168|249|357, 159|267|348.
Triangle T(n,k) begins:
00 : 1;
01 : 0, 1;
02 : 0, 1;
03 : 0, 1, 1;
04 : 0, 1, 1;
05 : 0, 1, 0, 1;
06 : 0, 1, 0, 1;
07 : 0, 1, 4, 0, 1;
08 : 0, 1, 7, 3, 1;
09 : 0, 1, 0, 9, 0, 1;
10 : 0, 1, 0, 0, 0, 1;
11 : 0, 1, 35, 43, 0, 0, 1;
12 : 0, 1, 62, 102, 0, 0, 1;
13 : 0, 1, 0, 0, 0, 0, 0, 1;
14 : 0, 1, 0, 595, 0, 68, 0, 1;
15 : 0, 1, 361, 1480, 871, 187, 17, 0, 1;
MATHEMATICA
Needs["Combinatorica`"]; T[n_, k_] := Count[(Equal @@ (Total /@ #)&) /@ KSetPartitions[n, k], True]; Table[row = Table[T[n, k], {k, 0, Ceiling[n/2]}]; Print[n, " ", row]; row, {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 20 2017 *)
CROSSREFS
Columns k=0-5 give: A000007, A000012 (for n>0), A058377, A112972, A317806, A317807.
Row sums give A035470 = 1 + A112956.
T(n^2,n) gives A321282.
Cf. A248112.
Sequence in context: A036861 A120324 A136630 * A111728 A359010 A143784
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Aug 06 2016
STATUS
approved