login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248112 Number T(n,k) of subsets of {1,...,n} containing n and having at least one set partition into k blocks with equal element sum; triangle T(n,k), n>=1, 1<=k<=floor((n+1)/2), read by rows. 11
1, 2, 4, 1, 8, 2, 16, 4, 1, 32, 10, 2, 64, 20, 5, 1, 128, 44, 12, 2, 256, 93, 29, 6, 1, 512, 198, 63, 14, 2, 1024, 414, 146, 37, 7, 1, 2048, 864, 329, 88, 16, 2, 4096, 1788, 722, 218, 49, 8, 1, 8192, 3687, 1613, 515, 118, 19, 2, 16384, 7541, 3505, 1226, 313, 62, 9, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Alois P. Heinz, Rows n = 0..24, flattened

EXAMPLE

T(7,3) = 5: {2,3,4,5,7}-> 25/34/7, {1,3,4,6,7}-> 16/34/7, {1,2,5,6,7}-> 16/25/7, {1,2,3,5,6,7}-> 17/26/35, {2,3,4,5,6,7}-> 27/36/45.

T(8,4) = 2: {1,2,3,5,6,7,8}-> 17/26/35/8, {1,2,3,4,5,6,7,8}-> 18/27/36/45.

T(9,5) = 1: {1,2,3,5,6,7,8,9}-> 18/27/36/45/9.

Triangle T(n,k) begins:

01 :    1;

02 :    2;

03 :    4,   1;

04 :    8,   2;

05 :   16,   4,   1;

06 :   32,  10,   2;

07 :   64,  20,   5,  1;

08 :  128,  44,  12,  2;

09 :  256,  93,  29,  6,  1;

10 :  512, 198,  63, 14,  2;

11 : 1024, 414, 146, 37,  7, 1;

12 : 2048, 864, 329, 88, 16, 2;

MAPLE

b:= proc(l, i) option remember; local k, r, j;

      k, r:= nops(l), {};

      if i*(i+1)/2 < l[-1]*k-add(j, j=l) then r

    elif i=0 then {r}

    else for j to k do r:= r union map(y->y union {i}, b((p->

           map(x->x-p[1], p))(sort(subsop(j=l[j]+i, l))), i-1))

         od;

         r union b(l, i-1)

      fi

    end:

A:= (n, k)-> `if`(k=1, 2^(n-1), nops(b([0$(k-1), n], n-1))):

seq(seq(A(n, k), k=1..iquo(n+1, 2)), n=1..15);

MATHEMATICA

b[l_, i_] := b[l, i] = Module[{k, r, j}, {k, r} = {Length[l], {}}; Which[ i*(i+1)/2 < l[[-1]]*k - Total[l], r, i == 0, {r}, True, For[j = 1, j <= k, j++, r = r ~Union~ Map[# ~Union~ {i}&, b[Function[p, Map[#-p[[1]]&, p] ][Sort[ReplacePart[l, j -> l[[j]]+i]]], i-1]]]; r ~Union~ b[l, i-1]]]; A[n_, k_] := If[k==1, 2^(n-1), Length[b[Append[Array[0&, (k-1)], n], n-1] ]]; Table[A[n, k], {n, 1, 15}, {k, 1, Quotient[n+1, 2]}] // Flatten (* Jean-Fran├žois Alcover, Feb 03 2017, Translated from Maple *)

CROSSREFS

Columns k=1-10 give: A000079(n-1), A232466, A232534, A248113, A248114, A248115, A248116, A248117, A248118, A248119.

Sequence in context: A181266 A302192 A087060 * A173122 A232723 A275486

Adjacent sequences:  A248109 A248110 A248111 * A248113 A248114 A248115

KEYWORD

nonn,tabf

AUTHOR

Alois P. Heinz, Oct 01 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 11:16 EDT 2022. Contains 353871 sequences. (Running on oeis4.)