login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248111
Least k such that ((k+2)/(k-2))^k - e^4 < 1/n.
5
18, 25, 30, 35, 39, 42, 46, 49, 52, 55, 57, 60, 62, 64, 67, 69, 71, 73, 75, 77, 79, 81, 82, 84, 86, 88, 89, 91, 92, 94, 96, 97, 99, 100, 101, 103, 104, 106, 107, 108, 110, 111, 112, 114, 115, 116, 118, 119, 120, 121, 122, 124, 125, 126, 127, 128, 129, 130
OFFSET
1,1
COMMENTS
In general, for fixed positive m, the limit of ((m*x+1)/(m*x-1))^x is e^(2/m), as illustrated by A248103, A248106, A248111.
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 14.
LINKS
EXAMPLE
Approximations are shown here:
n ... ((n+2)/(n-2))^n - e^4 ... 1/n
6 .... 9.40185 ................ 0.16666
12 ... 2.09576 ................ 0.8333333
18 ... 0.913001 ............... 0.0555555
24 ... 0.510023 ............... 0.0416667
30 ... 0.325376 ............... 0.0333333
36 ... 0.225565 ............... 0.0277778
a(2) = 25 because p(25) - e^4 < 1/2 < p(24) - e^4.
MATHEMATICA
z = 1200; p[k_] := p[k] = ((k + 2)/(k - 2))^k
N[Table[p[n] - E^4, {n, 1, z/12}]]
f[n_] := f[n] = Select[Range[z], # > 2 && p[#] - E^4 < 1/n &, 1]
u = Flatten[Table[f[n], {n, 1, z/10}]] (* A248111 *)
CROSSREFS
Sequence in context: A003300 A245022 A362435 * A109769 A350773 A229967
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 02 2014
STATUS
approved