login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003300
Denominators of coefficients of Green function for cubic lattice.
(Formerly M5053)
3
1, 1, 18, 24, 27216, 5878656, 105815808, 346652587008, 693305174016, 299507835174912, 102431679629819904, 75255927891296256, 451535567347777536, 422637291037519773696, 479270688036547423371264
OFFSET
0,3
REFERENCES
G. S. Joyce, The simple cubic lattice Green function, Phil. Trans. Roy. Soc., 273 (1972), 583-610.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
36*n*(n+1)*(2n+1)*A003299(n+1)/a(n+1)-4*n*(20*n^2+1)*A003299(n)/a(n)+(2*n-1)^3*A003299(n-1)/a(n-1) = 0. - R. J. Mathar, Dec 08 2005
MAPLE
print(1) ; Dnminus1 := 1 : print(denom(Dnminus1)) ; Dn := 7/18 : print(denom(Dn)) ; for nplus1 from 3 to 20 do n := nplus1-1 : Dnplus1 := (4*n*(20*n^2+1)*Dn-(2*n-1)^3*Dnminus1)/(36*n*nplus1*(2*n+1)) : print(denom(Dnplus1)) ; Dnminus1 := Dn : Dn := Dnplus1 : od : # R. J. Mathar
CROSSREFS
Cf. A003299.
Sequence in context: A109144 A166471 A072422 * A245022 A362435 A248111
KEYWORD
nonn,easy,frac
EXTENSIONS
More terms from R. J. Mathar, Dec 08 2005
STATUS
approved