login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003302 Denominators of coefficients of Green function for cubic lattice.
(Formerly M4655)
1
1, 9, 81, 8505, 229635, 413343, 531972441, 227988189, 3419822835, 29824274944035, 375785864294841, 307461161695779, 1116569481947829, 660923243352964935, 849758455739526345, 6875395665388507657395 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
REFERENCES
G. S. Joyce, The simple cubic lattice Green function, Phil. Trans. Roy. Soc., 273 (1972), 583-610.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
9(n+1)(2n+1)(2n+3)A003301(n+1)/a(n+1)-2(2n+1)(10n^2+10n+3)A003301(n)/a(n)+4n^3A003301(n-1)/a(n-1) = 0. - R. J. Mathar, Dec 08 2005
MAPLE
Dnminus1 := 1 : print(denom(Dnminus1)) ; Dn := 2/9 : print(denom(Dn)) ; for nplus1 from 2 to 20 do n := nplus1-1 : Dnplus1 := (2*(2*n+1)*(10*n^2+10*n+3)*Dn-4*n^3*Dnminus1)/(9*nplus1*(2*n+1)*(2*n+3)) : print(denom(Dnplus1)) ; Dnminus1 := Dn : Dn := Dnplus1 : od : # R. J. Mathar
CROSSREFS
Cf. A003301.
Sequence in context: A167723 A203107 A168493 * A053915 A067216 A076088
KEYWORD
nonn,easy,frac
AUTHOR
EXTENSIONS
More terms from R. J. Mathar, Dec 08 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 10:37 EDT 2024. Contains 374583 sequences. (Running on oeis4.)