login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A003299
Numerators of coefficients of Green function for cubic lattice.
(Formerly M4331)
3
0, 1, 7, 5, 3635, 557485, 7596391, 19681954039, 32139541115, 11613832153165, 3386240626860905, 2153823021586357, 11330361348611303, 9397464146366084237, 9528720716522267278849, 309116925259099828695359
OFFSET
0,3
REFERENCES
G. S. Joyce, The simple cubic lattice Green function, Phil. Trans. Roy. Soc., 273 (1972), 583-610.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
36*n*(n+1)*(2*n+1)*a(n+1)-4*n*(20*n^2+1)*a(n)+(2*n-1)^3*a(n+1) = 0. - R. J. Mathar, Dec 08 2005
MAPLE
Dnminus1 := 1 : print(numer(Dnminus1)) ; Dn := 7/18 : print(numer(Dn)) ; n := 2 : for nplus1 from 3 to 20 do n := nplus1-1 : Dnplus1 := (4*n*(20*n^2+1)*Dn-(2*n-1)^3*Dnminus1)/(36*n*nplus1*(2*n+1)) : print(numer(Dnplus1)) ; Dnminus1 := Dn : Dn := Dnplus1 : od : # R. J. Mathar
CROSSREFS
Cf. A003300.
Sequence in context: A300452 A302201 A263171 * A198677 A154017 A100222
KEYWORD
nonn,easy,frac
EXTENSIONS
More terms from R. J. Mathar, Dec 08 2005
STATUS
approved