login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003299
Numerators of coefficients of Green function for cubic lattice.
(Formerly M4331)
3
0, 1, 7, 5, 3635, 557485, 7596391, 19681954039, 32139541115, 11613832153165, 3386240626860905, 2153823021586357, 11330361348611303, 9397464146366084237, 9528720716522267278849, 309116925259099828695359
OFFSET
0,3
REFERENCES
G. S. Joyce, The simple cubic lattice Green function, Phil. Trans. Roy. Soc., 273 (1972), 583-610.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
36*n*(n+1)*(2*n+1)*a(n+1)-4*n*(20*n^2+1)*a(n)+(2*n-1)^3*a(n+1) = 0. - R. J. Mathar, Dec 08 2005
MAPLE
Dnminus1 := 1 : print(numer(Dnminus1)) ; Dn := 7/18 : print(numer(Dn)) ; n := 2 : for nplus1 from 3 to 20 do n := nplus1-1 : Dnplus1 := (4*n*(20*n^2+1)*Dn-(2*n-1)^3*Dnminus1)/(36*n*nplus1*(2*n+1)) : print(numer(Dnplus1)) ; Dnminus1 := Dn : Dn := Dnplus1 : od : # R. J. Mathar
CROSSREFS
Cf. A003300.
Sequence in context: A300452 A302201 A263171 * A198677 A154017 A100222
KEYWORD
nonn,easy,frac
EXTENSIONS
More terms from R. J. Mathar, Dec 08 2005
STATUS
approved