OFFSET
1,1
COMMENTS
The sequence is generalizable with primes starting a sequence of 2k consecutive odd primes.
Conjecture: a(n) exists for all n>0.
EXAMPLE
a(2)=5 because the 4 consecutive primes 5, 7, 11, 13 have gaps 2, 4, 2, which is symmetric about its center 4 = 2*2.
MAPLE
with(numtheory):nn:=500000:l:=2:T:=array(1..2*l-1)):
for n from 1 to 35 do:ii:=0:
for k from 1 to nn while(ii=0) do:
lst:={}:lst1:={}:
for m from 1 to 2*l do:
lst:=lst union {ithprime(k+m-1)}
od:
for p from 1 to 2*l do:
lst1:=lst1 union {lst[p]+lst[2*l-p+1]}
od:
n0:=nops(lst1):
if n0=1
then
for a from 1 to 2*l-1 do:
T[a]:=lst[a+1]-lst[a]:
od:
if T[2]=2*n then ii:=1:printf(`%d, `, lst[1]):
else fi :fi:
od :
od:
PROG
(PARI) a(n) = {pa = 3; pb = 5; pc = 7; forprime(p=8, , if (((pc-pb) == 2*n) && ((pb-pa) == (p-pc)), return(pa)); pa = pb; pb = pc; pc = p; ); } \\ Michel Marcus, Oct 16 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Oct 11 2015
STATUS
approved