OFFSET
1,2
COMMENTS
The function f(x)=sin(x)+sin(2x)+...+sin(nx), where n>=2, attains an absolute minimum, m, at some c between 0 and 2*pi. The absolute maximum, -m, occurs at 2*pi-c. Guide to related sequences (including graphs in Mathematica programs):
n....x.........minimum of f(x)
EXAMPLE
x=5.347255851518260503318727031180159764862...
min=-1.760172593046086919405184649699273192...
MATHEMATICA
f[t_] := Sin[t]; x = Minimize[f[t] + f[2 t], t]
x = N[Minimize[f[t] + f[2 t], t], 110]; u = Part[x, 1]
v = t /. Part[x, 2]
RealDigits[u] (* A198677 *)
RealDigits[v] (* A198678 *)
Plot[f[t] + f[2 t], {t, -3 Pi, 3 Pi}]
-Sqrt[3*(69 + 11*Sqrt[33])/2]/8 // RealDigits[#, 10, 99]& // First (* Jean-François Alcover, Feb 19 2013 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 29 2011
STATUS
approved