login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198680
Multiples of 3 whose sum of base-3 digits are also multiples of 3.
5
0, 15, 21, 33, 39, 45, 57, 63, 78, 87, 93, 99, 111, 117, 132, 135, 150, 156, 165, 171, 186, 189, 204, 210, 222, 228, 234, 249, 255, 261, 273, 279, 294, 297, 312, 318, 327, 333, 348, 351, 366, 372, 384, 390, 396, 405, 420, 426, 438, 444, 450, 462, 468, 483, 489, 495
OFFSET
1,2
COMMENTS
It appears that Sum[k^j, 0<=k<=2^n-1, k in A198680] = Sum[k^j, 0<=k<=2^n-1, k in A198681] = Sum[k^j, 0<=k<=2^n-1, k in A180682], for 0<=j<=n-1, which has been verified numerically in a number of cases. This is a generalization of Prouhet's Theorem (see the reference). To illustrate for j=3, we have Sum[k^3, 0<=k<=2^n-1, k in A198680] = {0, 0, 12636, 1108809, 94478400, 7780827681, 633724260624, 51425722195929, 4168024588857600,...}, Sum[k^3, 0<=k<=2^n-1, k in A198681] = {0, 27, 14580, 1095687, 94478400, 7780827681, 633724260624, 51425722195929, 4168024588857600,..., Sum[k^3, 0<=k<=2^n-1, k in A198682] = {0, 216, 7776, 1121931, 94478400, 7780827681, 633724260624, 51425722195929, 4168024588857600,...}, and it is seen that all three sums agree for n>=4=j+1.
LINKS
Chris Bernhardt, Evil twins alternate with odious twins, Math. Mag. 82 (2009), pp. 57-62.
Eric Weisstein's World of Mathematics, Prouhet-Tarry-Escott Problem
FORMULA
a(n) = 3*A079498(n). - Charles R Greathouse IV, Nov 02 2011
MATHEMATICA
Select[3*Range[0, 200], Divisible[Total[IntegerDigits[#, 3]], 3]&] (* Harvey P. Dale, May 31 2014 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
John W. Layman, Oct 28 2011
EXTENSIONS
Offset corrected by Amiram Eldar, Jan 05 2020
STATUS
approved