login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302201
E.g.f.: exp (e.g.f. for the "cusp form" A002408).
2
1, 1, -7, 5, 193, -1273, -2707, 118827, -853551, -4449558, 165958491, -1452523488, -8908621939, 425284211536, -4941880813097, -19601696580922, 1717461768840017, -27768623874128015, 11072293576957975, 9641864176354481835
OFFSET
0,3
COMMENTS
Whenever there is an important cusp form (such as A002408, or the Ramanujan tau or Delta function A000594), with e.g.f. C(x), say, it seems that the sequence with e.g.f. exp(C(x)) should also have some interesting properties.
LINKS
MATHEMATICA
eta = QPochhammer;
cc = CoefficientList[#, x]&;
seq[n_] := Module[{A}, A = O[x]^n; cc[Exp[(cc[x*(eta[x + A]*(eta[x^4 + A]/eta[x^2 + A]))^8]*cc[Exp[x + x*A]]) . x^Range[0, n]] + O[x]^n]* Range[0, n-1]!];
seq[20] (* Jean-François Alcover, Sep 07 2019, from PARI *)
PROG
(PARI) seq(n)={my(A=O(x^n)); Vec(serlaplace(exp(serconvol(x*(eta(x + A) * eta(x^4 + A) / eta(x^2 + A))^8, exp(x + x*A)))))} \\ Andrew Howroyd, Nov 04 2018
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Apr 15 2018
STATUS
approved