login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196530
Decimal expansion of log(2+sqrt(3))/sqrt(3).
6
7, 6, 0, 3, 4, 5, 9, 9, 6, 3, 0, 0, 9, 4, 6, 3, 4, 7, 5, 3, 1, 0, 9, 4, 2, 5, 4, 8, 8, 0, 4, 0, 5, 8, 2, 4, 2, 0, 1, 6, 2, 7, 7, 3, 0, 9, 4, 7, 1, 7, 6, 4, 2, 7, 0, 2, 0, 5, 7, 0, 6, 7, 0, 2, 6, 0, 0, 5, 5, 1, 2, 2, 6, 5, 4, 9, 1, 0, 7, 5, 3, 0, 2, 8, 4, 5, 8, 3, 6
OFFSET
0,1
COMMENTS
Equals the value of the Dirichlet L-series of a non-principal character modulo 12 (A110161) at s=1.
REFERENCES
L. B. W. Jolley, Summation of series, Dover (1961), eq. (83), page 16.
LINKS
Étienne Fouvry, Claude Levesque, and Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017.
E. D. Krupnikov, K. S. Kolbig, Some special cases of the generalized hypergeometric function (q+1)Fq, J. Comp. Appl. Math. 78 (1997) 79-95
R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015, Table in section 2.2, L(m=12,r=4,s=1).
FORMULA
Equals Sum_{n>=1} A110161(n)/n.
Equals Sum_{k>=1} (-1)^(k+1)*2^k/(k * binomial(2*k,k)). - Amiram Eldar, Aug 19 2020
Equals 1/Product_{p prime} (1 - Kronecker(12,p)/p), where Kronecker(12,p) = 0 if p = 2 or 3, 1 if p == 1 or 11 (mod 12) or -1 if p == 5 or 7 (mod 12). - Amiram Eldar, Dec 17 2023
Equals A259830 - 2. - Hugo Pfoertner, Apr 06 2024
Equals (1/2)*2F1(1/2,1;3/2;3/4) [Krupnikov] - R. J. Mathar, Jun 11 2024
EXAMPLE
0.7603459963009463475310942548...
MATHEMATICA
RealDigits[Log[2 + Sqrt[3]]/Sqrt[3], 10, 89][[1]] (* Bruno Berselli, Dec 20 2011 *)
PROG
(PARI) log(sqrt(3)+2)/sqrt(3) \\ Charles R Greathouse IV, May 15 2019
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
R. J. Mathar, Oct 03 2011
STATUS
approved