login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196531
E.g.f. satisfies: A(x) = Sum_{n>=0} exp(A(x)^n - 1)*A(x)^n*x^n/n!.
0
1, 1, 5, 52, 853, 19291, 557719, 19657667, 817847321, 39236975668, 2132767035851, 129548751144077, 8696909403827077, 639445475893738749, 51105213341360790655, 4411321463887034379616, 409004744372281965629617, 40539225718259037965353203
OFFSET
0,3
FORMULA
E.g.f. satisfies: A(x) = exp(-1) * Sum_{n>=0} exp(x*A(x)^(n+1))/n!.
E.g.f. satisfies: A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the e.g.f. of A195895; thus, A(x) = (1/x)*Series_Reversion(x/G(x)).
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 52*x^3/3! + 853*x^4/4! + 19291*x^5/5! +...
where
A(x) = 1 + exp(A(x)-1)*A(x)*x + exp(A(x)^2-1)*A(x)^2*x^2/2! + exp(A(x)^3-1)*A(x)^3*x^3/3! +...
Also, A(x) = G(x*A(x)) where G(x) = A(x/G(x)) = e.g.f. of A195895(n):
G(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 201*x^4/4! + 2996*x^5/5! + 57613*x^6/6! +...+ A195895(n)*x^n/n! +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, exp(A^m-1+x*O(x^n))*A^m*x^m/m!)); n!*polcoeff(A, n)}
(PARI) /* Alternate e.g.f. (requires high precision): */
{a(n)=local(A=1+x); for(i=1, n, A=exp(-1)*sum(m=0, 2*n+10, exp(x*A^(m+1)+x*O(x^n))/m!)); round(n!*polcoeff(A, n))}
CROSSREFS
Cf. A195895.
Sequence in context: A367165 A377324 A357346 * A108459 A223898 A210096
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2011
STATUS
approved