The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196531 E.g.f. satisfies: A(x) = Sum_{n>=0} exp(A(x)^n - 1)*A(x)^n*x^n/n!. 0
 1, 1, 5, 52, 853, 19291, 557719, 19657667, 817847321, 39236975668, 2132767035851, 129548751144077, 8696909403827077, 639445475893738749, 51105213341360790655, 4411321463887034379616, 409004744372281965629617, 40539225718259037965353203 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..17. FORMULA E.g.f. satisfies: A(x) = exp(-1) * Sum_{n>=0} exp(x*A(x)^(n+1))/n!. E.g.f. satisfies: A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the e.g.f. of A195895; thus, A(x) = (1/x)*Series_Reversion(x/G(x)). EXAMPLE E.g.f.: A(x) = 1 + x + 5*x^2/2! + 52*x^3/3! + 853*x^4/4! + 19291*x^5/5! +... where A(x) = 1 + exp(A(x)-1)*A(x)*x + exp(A(x)^2-1)*A(x)^2*x^2/2! + exp(A(x)^3-1)*A(x)^3*x^3/3! +... Also, A(x) = G(x*A(x)) where G(x) = A(x/G(x)) = e.g.f. of A195895(n): G(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 201*x^4/4! + 2996*x^5/5! + 57613*x^6/6! +...+ A195895(n)*x^n/n! +... PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, exp(A^m-1+x*O(x^n))*A^m*x^m/m!)); n!*polcoeff(A, n)} (PARI) /* Alternate e.g.f. (requires high precision): */ {a(n)=local(A=1+x); for(i=1, n, A=exp(-1)*sum(m=0, 2*n+10, exp(x*A^(m+1)+x*O(x^n))/m!)); round(n!*polcoeff(A, n))} CROSSREFS Cf. A195895. Sequence in context: A363356 A365012 A357346 * A108459 A223898 A210096 Adjacent sequences: A196528 A196529 A196530 * A196532 A196533 A196534 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 07:12 EDT 2023. Contains 365494 sequences. (Running on oeis4.)