OFFSET
0,3
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..100
FORMULA
E.g.f. satisfies: A(x) = Sum_{n>=0} exp(A(x)^n - 1)*x^n/n!. [From Paul D. Hanna, Sep 27 2011]
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 201*x^4/4! + 2996*x^5/5! +...
where
A(x) = exp(-1)*(exp(x) + exp(x*A(x)) + exp(x*A(x)^2)/2! + exp(x*A(x)^3)/3! +...).
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(-1)*sum(m=0, 2*n+10, exp(x*A^m+x*O(x^n))/m!)); round(n!*polcoeff(A, n))}
(PARI) {a(n)=local(A=1+x, X=x+x*O(x^n)); for(i=1, n, A=1+sum(m=1, n, exp(A^m-1)*X^m/m!)); n!*polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 24 2011
STATUS
approved