login
A127502
Number of n X n positive definite matrices with 1's on the main diagonal and -1's and 0's elsewhere.
2
1, 3, 19, 201, 3001, 55291, 1115003, 21837649, 373215601, 8282131891
OFFSET
1,2
COMMENTS
A real matrix M is positive-definite if x M x' > 0 for all nonzero real vectors x. Equivalently, all eigenvalues of M + M' are positive.
M need not be symmetric. For the number of different values of M + M' see A084552.
EXAMPLE
For n = 2 the three matrices are {{{1, 0}, {0, 1}}, {{1, 0}, {-1, 1}}, {{1, -1}, {0, 1}}}.
PROG
(PARI) { a(n) = M=matrix(n, n, i, j, 2*(i==j)); r=0; b(1); r } { b(k) = local(t); if(k> n, t=0; for(i=1, n, for(j=1, i-1, if(M[i, j]==1, t++); )); r+=2^t; return; ); forvec(x=vector(k-1, i, [ -1, 0]), for(i=1, k-1, M[k, i]=M[i, k]=x[i]); if( matdet(vecextract(M, 2^k-1, 2^k-1), 1)>0, b(k+1) ) ) } (Alekseyev)
KEYWORD
nonn,nice
AUTHOR
Max Alekseyev, Jan 16 2007
STATUS
approved