login
A085657
Number of n X n symmetric positive definite matrices with 2's on the main diagonal and 1's and 0's elsewhere.
6
1, 2, 8, 61, 819, 17417, 506609, 15582436
OFFSET
1,2
COMMENTS
Of course the total number of symmetric matrices of this type (not necessarily positive definite) is 2^C(n,2).
This gives the number of different values of A + A' where A runs through the matrices counted in A085656. - Max Alekseyev, Dec 13 2005
EXAMPLE
The singular matrix
2 0 1 1
0 2 1 1
1 1 2 0
1 1 0 2
is one of the three 4 X 4 matrices which are not positive definite.
PROG
(PARI) { a(n) = M=matrix(n, n, i, j, 2*(i==j)); r=0; b(1); r } { b(k) = if(k>n, r++; return); forvec(x=vector(k-1, i, [0, 1]), for(i=1, k-1, M[k, i]=M[i, k]=x[i]); if( matdet(vecextract(M, 2^k-1, 2^k-1), 1)>0, b(k+1) ) ) } (Max Alekseyev)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 12 2003
EXTENSIONS
More terms from Max Alekseyev, Dec 13 2005
STATUS
approved