login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188489
Exponential transform of (A000275 number of pairs of permutations with rise/rise forbidden).
3
1, 1, 2, 8, 61, 797, 16021, 457285, 17529203, 867230231, 53745914922, 4076301322848, 371301496685164, 39992538951200636, 5027440719872343598, 729432303460596468394, 120977789712983152108734, 22743262423568258626295550
OFFSET
0,3
LINKS
FORMULA
G.f.: A(x) = exp( Sum_{n>=1} A000275(n)*x^n/n ) where A000275 is the number of pairs of permutations with rise/rise forbidden.
a(n) ~ c * n! * (n-1)! / r^n, where r = 1/4*BesselJZero[0,1]^2 = 1.44579649073669613 and c = 1/(sqrt(r) * BesselJ(1, 2*sqrt(r))) = 1.6019746969280466266484... - Vaclav Kotesovec, Mar 02 2014, updated Apr 01 2018
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 61*x^4 + 797*x^5 + 16021*x^6 +...
log(A(x)) = x + 3*x^2/2 + 19*x^3/3 + 211*x^4/4 + 3651*x^5/5 + 90921*x^6/6 +...+ A000275(n)*x^n/n +...
PROG
(PARI) {A000275(n)=n!^2*4^n*polcoeff(1/besselj(0, x+x*O(x^(2*n))), 2*n)}
{a(n)=polcoeff(exp(sum(m=1, n, A000275(m)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Cf. A000275 (log), A115368.
Sequence in context: A368450 A370913 A208356 * A085657 A005215 A058862
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 01 2011
STATUS
approved