login
A362968
Number of integral points in 2 * permutohedron of order n.
2
1, 3, 19, 201, 3081, 62683, 1598955, 49180113, 1773405649, 73410669171, 3432267261699, 178922825114905, 10291053760222041, 647436905815864011, 44229766376059342171, 3260749830852693615777, 258039101519624535653025
OFFSET
1,2
COMMENTS
Every vectorial sum of two permutations represents an integral point in 2*permutohedron, however the converse does not hold. Hence, a(n) >= A175176(n) for all n, where the equality holds only for n <= 5.
Number of points up to their components order is given by A007747.
LINKS
C. Bebeacua, T. Mansour, A. Postnikov, and S. Severini. On the X-rays of permutations, arXiv:math/0506334 [math.CO], 2005.
Wikipedia, Permutohedron.
FORMULA
a(n) = Sum_{k=0..n-1} A138464(n,k) * 2^k, which is the value of the Ehrhart polynomial of permutohedron at t = 2.
E.g.f.: exp(-W(-2*x)/2 - W(-2*x)^2/4), where W() is the Lambert function.
MAPLE
w := LambertW(-2*x): egf := exp(-w * (2 + w) / 4): ser := series(egf, x, 20):
seq(n! * coeff(ser, x, n), n = 1..17); # Peter Luschny, Jun 19 2023
PROG
(PARI) a362968(n) = my(x=y+O(y^(n+1))); n! * polcoef( exp(-lambertw(-2*x)/2 - lambertw(-2*x)^2/4), n );
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev, Jun 17 2023
STATUS
approved