login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195947
E.g.f. satisfies: A(x) = Sum_{n>=0} (-1)^n/n! * Sum_{k=0..n} (-1)^k*C(n,k)*(1 + x*A(x)^k)^k.
5
1, 1, 5, 58, 1093, 28731, 971719, 40236449, 1972617385, 111779567596, 7189852342091, 517600784497237, 41237095369088029, 3602389000897583001, 342422738142493542031, 35186740743134660359186, 3887047020291801938191057, 459397561144034558519708403
OFFSET
0,3
FORMULA
E.g.f. satisfies: A(x) = Sum_{n>=0} A(x)^(n^2)*exp(A(x)^n - 1)*x^n/n!.
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 58*x^3/3! + 1093*x^4/4! + 28731*x^5/5! +...
where:
A(x) = 1 + A(x)*exp(A(x) - 1)*x + A(x)^4*exp(A(x)^2 - 1)*x^2/2! + A(x)^9*exp(A(x)^3 - 1)*x^3/3! + A(x)^16*exp(A(x)^4 - 1)*x^4/4! +...
Also, e.g.f. A = A(x) satisfies:
A(x) = 1 - (1 - (1+x*A)) + 1/2!*(1 - 2*(1+x*A) + (1+x*A^2)^2) -
1/3!*(1 - 3*(1+x*A) + 3*(1+x*A^2)^2 - (1+x*A^3)^3) +
1/4!*(1 - 4*(1+x*A) + 6*(1+x*A^2)^2 - 4*(1+x*A^3)^3 + (1+x*A^4)^4) -
1/5!*(1 - 5*(1+x*A) + 10*(1+x*A^2)^2 - 10*(1+x*A^3)^3 + 5*(1+x*A^4)^4 - (1+x*A^5)^5) +-...
PROG
(PARI) {a(n)=local(A=1+x, X=x+x*O(x^n)); for(i=1, n, A=1+sum(m=1, n, exp(A^m-1)*A^(m^2)*X^m/m!)); n!*polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x, X=x+x*O(x^n)); for(i=1, n, A=1+sum(m=1, n, 1/m!*sum(k=0, m, binomial(m, k)*(-1)^(m-k)*(1+X*A^k)^k))); n!*polcoeff(A, n)}
CROSSREFS
Sequence in context: A097631 A365013 A130768 * A371329 A156326 A336258
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 27 2011
STATUS
approved