login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108459 Number of labeled partitions of (n,n) into pairs (i,j). 22
1, 1, 5, 52, 855, 19921, 614866, 24040451, 1152972925, 66200911138, 4465023867757, 348383154017581, 31052765897026352, 3128792250765898965, 353179564583216567917, 44320731930172534543092, 6141797839043095806714667, 934330605640859569909566925 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Partitions of n black objects labeled 1..n and n white objects labeled 1..n. Each partition must have at least one white object.
a(n) is also the number of elements of the partition monoid P_n with domain {1,...,n}. Elements of P_n are set partitions of {1,1',...,n,n'}, and the domain of such a partition is the set of all points in {1,...,n} that belong to a block containing a dashed element. - James East, Apr 10 2018
LINKS
FORMULA
a(n) = Sum_{k=0..n} k^n*Stirling2(n,k). - Vladeta Jovovic, Aug 31 2006
E.g.f.: Sum_{n>=0} (exp(n*x)-1)^n / n!. - Vladeta Jovovic, Jul 12 2007
E.g.f.: Sum_{n>=0} exp(n^2*x) * exp( -exp(n*x) ) / n!. - Paul D. Hanna, Jun 28 2019
O.g.f.: Sum_{n>=0} n^n * x^n / Product_{k=1..n} (1 - n*k*x). - Paul D. Hanna, Sep 17 2013
a(n) = Sum_{k=0..n} Stirling2(n,k) * Sum_{l=k..n} Stirling2(n,l)*T(l,k). Here T(l,k) are the falling factorials. - James East, Apr 10 2018
MAPLE
b:= proc(n) option remember; expand(`if`(n=0, 1,
x*add(b(n-j)*binomial(n-1, j-1), j=1..n)))
end:
a:= n-> add(coeff(b(n), x, j)*j^n, j=0..n):
seq(a(n), n=0..21); # Alois P. Heinz, Dec 02 2023
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, m^m*x^m/prod(k=1, m, 1-m*k*x +x*O(x^n))), n)} \\ Paul D. Hanna, Sep 17 2013
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, (exp(m*x+x*O(x^n))-1)^m/m!), n)} \\ Paul D. Hanna, Sep 17 2013
CROSSREFS
Main diagonal of A108458. Cf. A108461.
Cf. A048993 (Stirling2), A068424 (falling factorial).
Bisection of A124421 (even part).
Sequence in context: A367165 A357346 A196531 * A223898 A210096 A076281
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jun 03 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 12 22:00 EDT 2024. Contains 374257 sequences. (Running on oeis4.)