login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108459 Number of labeled partitions of (n,n) into pairs (i,j). 16
1, 1, 5, 52, 855, 19921, 614866, 24040451, 1152972925, 66200911138, 4465023867757, 348383154017581, 31052765897026352, 3128792250765898965, 353179564583216567917, 44320731930172534543092, 6141797839043095806714667, 934330605640859569909566925 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Partitions of n black objects labeled 1..n and n white objects labeled 1..n. Each partition must have at least one white object.

a(n) is also the number of elements of the partition monoid P_n with domain {1,...,n}. Elements of P_n are set partitions of {1,1',...,n,n'}, and the domain of such a partition is the set of all points in {1,...,n} that belong to a block containing a dashed element. - James East, Apr 10 2018

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..200

FORMULA

a(n) = Sum_{k=0..n} k^n*Stirling2(n,k). - Vladeta Jovovic, Aug 31 2006

E.g.f.: Sum_{n>=0} (exp(n*x)-1)^n / n!. - Vladeta Jovovic, Jul 12 2007

E.g.f.: Sum_{n>=0} exp(n^2*x) * exp( -exp(n*x) ) / n!. - Paul D. Hanna, Jun 28 2019

O.g.f.: Sum_{n>=0} n^n * x^n / Product_{k=1..n} (1 - n*k*x). - Paul D. Hanna, Sep 17 2013

a(n) = Sum_{k=0..n} Stirling2(n,k) * Sum_{l=k..n} Stirling2(n,l)*T(l,k). Here T(l,k) are the falling factorials. - James East, Apr 10 2018

PROG

(PARI) {a(n)=polcoeff(sum(m=0, n, m^m*x^m/prod(k=1, m, 1-m*k*x +x*O(x^n))), n)} \\ Paul D. Hanna, Sep 17 2013

(PARI) {a(n)=n!*polcoeff(sum(m=0, n, (exp(m*x+x*O(x^n))-1)^m/m!), n)} \\ Paul D. Hanna, Sep 17 2013

CROSSREFS

Main diagonal of A108458. Cf. A108461.

Cf. A048993 (Stirling2), A068424 (falling factorial).

Cf. A326600, A326270, A326271, A326288.

Sequence in context: A099881 A280063 A196531 * A223898 A210096 A076281

Adjacent sequences:  A108456 A108457 A108458 * A108460 A108461 A108462

KEYWORD

nonn

AUTHOR

Christian G. Bower, Jun 03 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 27 17:37 EDT 2021. Contains 348287 sequences. (Running on oeis4.)