login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108458
Triangle read by rows: T(n,k) is the number of set partitions of {1,2,...,n} in which the last block is the singleton {k}, 1<=k<=n; the blocks are ordered with increasing least elements.
3
1, 0, 1, 0, 1, 2, 0, 1, 3, 5, 0, 1, 5, 10, 15, 0, 1, 9, 22, 37, 52, 0, 1, 17, 52, 99, 151, 203, 0, 1, 33, 130, 283, 471, 674, 877, 0, 1, 65, 340, 855, 1561, 2386, 3263, 4140, 0, 1, 129, 922, 2707, 5451, 8930, 12867, 17007, 21147, 0, 1, 257, 2572, 8919, 19921, 35098, 53411, 73681, 94828, 115975
OFFSET
1,6
COMMENTS
Another way to obtain this sequence (with offset 0): Form the infinite array U(n,k) = number of labeled partitions of (n,k) into pairs (i,j), for n >= 0, k >= 0 and read it by antidiagonals. In other words, U(n,k) = number of partitions of n black objects labeled 1..n and k white objects labeled 1..k. Each block must have at least one white object.
Then T(n,k)=U(n+k,k+1). Thus the two versions are related like "multichoose" to "choose". - Augustine O. Munagi, Jul 16 2007
LINKS
FORMULA
T(n,1)=0 for n>=2; T(n,2)=1 for n>=2; T(n,3)=1+2^(n-3) for n>=3; T(n,n)=B(n-1), T(n,n-1)=B(n-1)-B(n-2), where B(q) are the Bell numbers (A000110).
Double e.g.f.: exp(exp(x)*(exp(y)-1)).
U(n,k) = Sum_{i=0..k} i^(n-k)*Stirling2(k,i). - Vladeta Jovovic, Jul 12 2007
EXAMPLE
Triangle T(n,k) starts:
1;
0,1;
0,1,2;
0,1,3,5;
0,1,5,10,15;
T(5,3)=5 because we have 1245|3, 145|2|3, 14|25|3, 15|24|3 and 1|245|3.
The arrays U(n,k) starts:
1 0 0 0 0 ...
1 1 1 1 1 ...
2 3 5 9 17 ...
5 10 22 52 130 ...
15 37 99 283 855 ...
MATHEMATICA
T[n_, k_] := Sum[If[n == k, 1, i^(n-k)]*StirlingS2[k, i], {i, 0, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 10 2024, after Vladeta Jovovic *)
CROSSREFS
Row sums of T(n, k) yield A124496(n, 1).
Cf. A108461.
Columns of U(n, k): A000110, A005493, A033452.
Rows of U(n, k): A000007, A000012, A000051.
Main diagonal: A108459.
Sequence in context: A367562 A213861 A355173 * A254281 A295682 A195772
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, Jun 03 2005; Emeric Deutsch, Nov 14 2006
EXTENSIONS
Edited by N. J. A. Sloane, May 22 2008, at the suggestion of Vladeta Jovovic. This entry is a composite of two entries submitted independently by Christian G. Bower and Emeric Deutsch, with additional comments from Augustine O. Munagi.
STATUS
approved