login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263170
a(n) = (Sum_{k=1..n} prime(k))^3 - (Sum_{k=1..n} prime(k)^3).
1
0, 90, 840, 4410, 20118, 64890, 186168, 440730, 972030, 2094330, 4013850, 7512570, 13279548, 21906810, 34902498, 54772410, 84444690, 124785210, 181983378, 259292154, 358930146, 492406650, 664548816, 889272570, 1186319550, 1559209530, 2012668266, 2568943290, 3232452450, 4031692410
OFFSET
1,2
COMMENTS
Obviously, a(n) is always an even number.
All a(n) are divisible by 6. - Robert Israel, Oct 16 2020
LINKS
FORMULA
a(n) = A007504(n)^3 - A098999(n).
a(n) mod 2 = 0.
EXAMPLE
For n = 2, a(2) = (2 + 3)^3 - (2^3 + 3^3) = 90.
MAPLE
A263170 := proc(n)
su := add(ithprime(i), i=1..n) ;
su3 := add(ithprime(i)^3, i=1..n) ;
su^3-su3 ;
end proc: # R. J. Mathar, Oct 21 2015
MATHEMATICA
Table[Sum[Prime@ k, {k, n}]^3 - Sum[Prime[k]^3, {k, n}], {n, 30}] (* Michael De Vlieger, Oct 19 2015 *)
PROG
(PARI) a(n) = sum(k=1, n, prime(k))^3 - sum(k=1, n, prime(k)^3);
CROSSREFS
Cf. A007504, A098999. 3D analog of A065595.
Sequence in context: A304165 A232588 A097372 * A321303 A376706 A101243
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Oct 11 2015
STATUS
approved