login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304165
a(n) = 324*n^2 - 336*n + 102 (n >= 1).
2
90, 726, 2010, 3942, 6522, 9750, 13626, 18150, 23322, 29142, 35610, 42726, 50490, 58902, 67962, 77670, 88026, 99030, 110682, 122982, 135930, 149526, 163770, 178662, 194202, 210390, 227226, 244710, 262842, 281622, 301050, 321126, 341850, 363222, 385242, 407910, 431226, 455190, 479802, 505062
OFFSET
1,1
COMMENTS
a(n) is the first Zagreb index of the HcDN1(n) network (see Fig. 3 in the Hayat et al. manuscript).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of HcDN1(n) is M(HcDN1(n);x,y) = 6x^3*y^3 + 12(n-1)x^3*y^5 + 6nx^3*y^6 + 18(n-1)x^5*y^6 + (27n^2 -57n +30)x^6*y^6. - Emeric Deutsch, May 11 2018
LINKS
Emeric Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
S. Hayat, M. A. Malik, and M. Imran, Computing topological indices of honeycomb derived networks, Romanian J. of Information Science and Technology, 18, No. 2, 2015, 144-165.
FORMULA
From Colin Barker, May 10 2018: (Start)
G.f.: 6*x*(15 + 76*x + 17*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
E.g.f.: 6*(exp(x)*(17 - 2*x + 54*x^2) - 17). - Stefano Spezia, Apr 15 2023
MAPLE
seq(324*n^2-336*n+102, n=1..40);
MATHEMATICA
Table[324n^2-336n+102, {n, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {90, 726, 2010}, 40] (* Harvey P. Dale, Apr 12 2020 *)
PROG
(PARI) a(n) = 324*n^2-336*n+102; \\ Altug Alkan, May 09 2018
(PARI) Vec(6*x*(15 + 76*x + 17*x^2) / (1 - x)^3 + O(x^60)) \\ Colin Barker, May 10 2018
(GAP) List([1..40], n->324*n^2-336*n+102); # Muniru A Asiru, May 10 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 09 2018
STATUS
approved