login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304168
a(n) = 2*3^n - 2^(n-1) (n>=1).
2
5, 16, 50, 154, 470, 1426, 4310, 12994, 39110, 117586, 353270, 1060834, 3184550, 9557746, 28681430, 86060674, 258214790, 774709906, 2324260790, 6973044514, 20919657830, 62760022066, 188282163350, 564850684354, 1694560441670, 5083698102226, 15251127861110, 45753450692194, 137260486294310, 411781727318386
OFFSET
1,1
COMMENTS
For n>=2, a(n) is the number of edges of the Sierpinski Gasket Rhombus graph SR(n) (see Theorem 2.1 in the D. Antony Xavier et al. reference).
LINKS
D. Antony Xavier, M. Rosary, and Andrew Arokiaraj, Topological properties of Sierpinski Gasket Rhombus graphs, International J. of Mathematics and Soft Computing, 4, No. 2, 2014, 95-104.
FORMULA
From Colin Barker, May 10 2018: (Start)
G.f.: x*(5 - 9*x) / ((1 - 2*x)*(1 - 3*x)).
a(n) = 5*a(n-1) - 6*a(n-2) for n>2.
(End)
MAPLE
seq(2*3^n-2^(n-1), n = 1 .. 40);
PROG
(PARI) Vec(x*(5 - 9*x) / ((1 - 2*x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, May 10 2018
(GAP) List([1..35], n->2*3^n-2^(n-1)); # Muniru A Asiru, May 10 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 10 2018
STATUS
approved