login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304162
a(n) = n^4 - 3*n^3 + 9*n^2 - 7*n + 5 (n>=1).
1
5, 19, 65, 185, 445, 935, 1769, 3085, 5045, 7835, 11665, 16769, 23405, 31855, 42425, 55445, 71269, 90275, 112865, 139465, 170525, 206519, 247945, 295325, 349205, 410155, 478769, 555665, 641485, 736895, 842585, 959269, 1087685, 1228595, 1382785
OFFSET
1,1
COMMENTS
For n>=2, a(n) is the second Zagreb index of the graph KK_n, defined as 2 copies of the complete graph K_n, with one vertex from one copy joined to two vertices of the other copy (see the Stevanovic et al. reference, p. 396).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of KK_n is M(KK_n; x,y) = (n-2)^2*x^(n-1)*y^(n-1) + 2*(n-2)*x^(n-1)*y^n + (n-1)*x^(n-1)*y^(n+1) + x^n*y^n + 2*x^n*y^(n+1).
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
D. Stevanovic, I. Stankovic, and M. Milosevic, More on the relation between energy and Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 61, 2009, 395-401.
FORMULA
From Colin Barker, May 10 2018: (Start)
G.f.: x*(5 - 6*x + 20*x^2 + 5*x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
MAPLE
seq(n^4-3*n^3+9*n^2-7*n+5, n = 1 .. 40);
MATHEMATICA
Table[n (n - 1) (n^2 - 2 n + 7) + 5, {n, 1, 40}] (* Bruno Berselli, May 10 2018 *)
PROG
(PARI) Vec(x*(5 - 6*x + 20*x^2 + 5*x^4) / (1 - x)^5 + O(x^60)) \\ Colin Barker, May 10 2018
(GAP) List([1..40], n->n^4-3*n^3+9*n^2-7*n+5); # Muniru A Asiru, May 10 2018
CROSSREFS
Cf. A304161.
Sequence in context: A378383 A229239 A296330 * A001870 A025568 A001047
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 10 2018
STATUS
approved