login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304159
a(n) = 2*n^3 - 4*n^2 + 6*n - 2 (n>=1).
1
2, 10, 34, 86, 178, 322, 530, 814, 1186, 1658, 2242, 2950, 3794, 4786, 5938, 7262, 8770, 10474, 12386, 14518, 16882, 19490, 22354, 25486, 28898, 32602, 36610, 40934, 45586, 50578, 55922, 61630, 67714, 74186, 81058, 88342, 96050, 104194, 112786, 121838, 131362, 141370, 151874, 162886, 174418, 186482, 199090
OFFSET
1,1
COMMENTS
a(n) is the first Zagreb index of the Barbell graph B(n) (n>=3).
The Barbell graph B(n) is defined as two copies of the complete graph K(n) (n>=3), connected by a bridge.
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of the Barbell graph B(n) is M(B(n),x,y) = (n-1)(n-2)x^{n-1}*y^{n-1}+2(n-1)x^{n-1]*y^n + x^n*y^n.
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
Eric Weisstein's World of Mathematics, Barbell Graph
FORMULA
a(n) = 2 * A100705(n-1).
From Colin Barker, May 09 2018: (Start)
G.f.: 2*x*(1 + x + 3*x^2 + x^3) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)
a(n) = A033431(n) - A002943(n-1) = A033431(n) - 2*A014105(n-1). - Omar E. Pol, May 09 2018
MAPLE
seq(2*n^3-4*n^2+6*n-2, n = 1 .. 40);
MATHEMATICA
Table[2n^3-4n^2+6n-2 , {n, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {2, 10, 34, 86}, 50] (* Harvey P. Dale, Mar 05 2023 *)
PROG
(PARI) Vec(2*x*(1 + x + 3*x^2 + x^3) / (1 - x)^4 + O(x^60)) \\ Colin Barker, May 09 2018
(PARI) a(n) = 2*n^3-4*n^2+6*n-2; \\ Altug Alkan, May 09 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 09 2018
STATUS
approved