OFFSET
1,1
COMMENTS
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of the linear phenylene G[n] is M(G[n];x,y) = 6*x^2*y^2 + 4*(n - 1)*x^2*y^3 + 4(n - 1)*x^3*y^3.
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
O. Bodroza-Pantic, I. Gutman, and S. J. Cyvin, Fibonacci numbers and algebraic structure count of some non-benzenoid conjugated polymers, The Fibonacci Quarterly, 35, 1, 1997, 75-83.
M. R. Darafsheh, Computation of topological indices of some graphs, Acta Appl. Math., 110, 2010, 1225-1235.
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
P. Gayathri and U. Priyanka, Degree based topological indices of linear phenylene, Internat. J. of Innovative Research in Science, Engineering and Technology, 6, 8, 2017, 16986-16997.
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
a(n) = 60*n - 36.
a(n) = 12 * A016873(n-1). - Alois P. Heinz, May 09 2018
From Bruno Berselli, May 09 2018: (Start)
O.g.f.: 12*x*(2 + 3*x)/(1 - x)^2.
E.g.f.: 12*(3 - 3*exp(x) + 5*x*exp(x)).
a(n) = 2*a(n-1) - a(n-2).
EXAMPLE
a(1) = 24; indeed, G[1] is a hexagon; we have 6 edges, each with end vertices of degree 2; then the second Zagreb index is 6*2*2 =24.
MAPLE
seq(60*n - 36, n = 1 .. 40);
PROG
(Julia) [60*n-36 for n in 1:50] |> println # Bruno Berselli, May 09 2018
(PARI) a(n) = 60*n-36; \\ Altug Alkan, May 09 2018
(PARI) Vec(12*x*(2 + 3*x)/(1 - x)^2 + O(x^40)) \\ Colin Barker, May 23 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 08 2018
STATUS
approved