login
A304158
a(n) is the second Zagreb index of the linear phenylene G[n], defined pictorially in the Darafsheh reference (Fig. 3).
2
24, 84, 144, 204, 264, 324, 384, 444, 504, 564, 624, 684, 744, 804, 864, 924, 984, 1044, 1104, 1164, 1224, 1284, 1344, 1404, 1464, 1524, 1584, 1644, 1704, 1764, 1824, 1884, 1944, 2004, 2064, 2124, 2184, 2244, 2304, 2364, 2424, 2484, 2544, 2604, 2664, 2724, 2784, 2844, 2904, 2964
OFFSET
1,1
COMMENTS
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of the linear phenylene G[n] is M(G[n];x,y) = 6*x^2*y^2 + 4*(n - 1)*x^2*y^3 + 4(n - 1)*x^3*y^3.
LINKS
O. Bodroza-Pantic, I. Gutman, and S. J. Cyvin, Fibonacci numbers and algebraic structure count of some non-benzenoid conjugated polymers, The Fibonacci Quarterly, 35, 1, 1997, 75-83.
M. R. Darafsheh, Computation of topological indices of some graphs, Acta Appl. Math., 110, 2010, 1225-1235.
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
P. Gayathri and U. Priyanka, Degree based topological indices of linear phenylene, Internat. J. of Innovative Research in Science, Engineering and Technology, 6, 8, 2017, 16986-16997.
FORMULA
a(n) = 60*n - 36.
a(n) = 12 * A016873(n-1). - Alois P. Heinz, May 09 2018
From Bruno Berselli, May 09 2018: (Start)
O.g.f.: 12*x*(2 + 3*x)/(1 - x)^2.
E.g.f.: 12*(3 - 3*exp(x) + 5*x*exp(x)).
a(n) = 2*a(n-1) - a(n-2).
a(n) = A008594(5*n-3) = A017317(6*n-4) = A072710(4*n-2) = A139245(3*n-1). (End)
EXAMPLE
a(1) = 24; indeed, G[1] is a hexagon; we have 6 edges, each with end vertices of degree 2; then the second Zagreb index is 6*2*2 =24.
MAPLE
seq(60*n - 36, n = 1 .. 40);
PROG
(Julia) [60*n-36 for n in 1:50] |> println # Bruno Berselli, May 09 2018
(PARI) a(n) = 60*n-36; \\ Altug Alkan, May 09 2018
(PARI) Vec(12*x*(2 + 3*x)/(1 - x)^2 + O(x^40)) \\ Colin Barker, May 23 2018
CROSSREFS
Subsequence of A121024.
Sequence in context: A030622 A063456 A265646 * A045946 A192838 A289155
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 08 2018
STATUS
approved