login
A265646
Numbers k such that k = Sum_{i=1..j} (d_i mod d), where d_i are their aliquot parts and d is one of them.
2
24, 84, 120, 270, 672, 1080, 1170, 1488, 1638, 2160, 3360, 3960, 5400, 7392, 10920, 13104, 22932, 24384, 30240, 32640, 64260, 167580, 199584, 241920, 290160, 293760, 333312, 351000, 411264, 435708, 445536, 510720, 523776, 524160, 594048, 725400, 760320, 804384
OFFSET
1,1
COMMENTS
All terms are multiples of 6.
The sequence is a subset of A273124.
EXAMPLE
Aliquot parts of 24 are 1, 2, 3, 4, 6, 8, 12 and 1 mod 12 + 2 mod 12 + 3 mod 12 + 4 mod 12 + 6 mod 12 + 8 mod 12 + 12 mod 12 = 1 + 2 + 3 + 4 + 6 + 8 + 0 = 24.
Aliquot parts of 120 are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60. In this case we can choose two different values: 24 and 30. In fact the sum of divisors from 1 to 20 is 86. Then 24 mod 24 = 0, 30 mod 24 = 6, 40 mod 24 = 16, 60 mod 24 = 12 and 86 + 0 + 6 + 16 + 12 = 120. Again, 24 mod 30 = 24, 30 mod 30 = 0, 40 mod 30 = 10, 60 mod 30 = 0 and 86 + 24 + 0 + 10 + 0 = 120.
MAPLE
with(numtheory): P:= proc(q) local a, b, j, k, n;
for n from 1 to q do a:=sort([op(divisors(n))]);
for k from 1 to nops(a)-1 do b:=0; for j from 1 to nops(a)-1 do b:=b+(a[j] mod a[k]); od;
if b=n then print(n); break; fi; od; od; end: P(10^9);
MATHEMATICA
Select[6 Range[10^5], MemberQ[Function[d, Total@ Mod[d, #] & /@ d]@ Most@ Divisors@ #, #] &] (* Michael De Vlieger, May 17 2016 *)
CROSSREFS
Cf. A273124.
Sequence in context: A182915 A030622 A063456 * A304158 A045946 A192838
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, May 17 2016
STATUS
approved