login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072710 Last digit of F(n) is 8 where F(n) is the n-th Fibonacci number. 3
6, 24, 27, 33, 66, 84, 87, 93, 126, 144, 147, 153, 186, 204, 207, 213, 246, 264, 267, 273, 306, 324, 327, 333, 366, 384, 387, 393, 426, 444, 447, 453, 486, 504, 507, 513, 546, 564, 567, 573, 606, 624, 627, 633, 666, 684, 687, 693, 726, 744, 747, 753, 786 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Sequence contains numbers of form (6+60k), (24+60k), (27+60k), (33+60k), with k>=0.

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).

FORMULA

G.f.: x*(27*x^4+6*x^3+3*x^2+18*x+6) / (x^5-x^4-x+1). - Colin Barker, Jun 16 2013

a(n) = (-60 - 6*(-1)^n - (21-9*i)*(-i)^n - (21+9*i)*i^n + 60*n) / 4 where i=sqrt(-1). - Colin Barker, Oct 16 2015

PROG

(PARI) a(n) = (-60 - 6*(-1)^n - (21-9*I)*(-I)^n - (21+9*I)*I^n + 60*n) / 4 \\ Colin Barker, Oct 16 2015

(PARI) Vec(x*(27*x^4+6*x^3+3*x^2+18*x+6)/(x^5-x^4-x+1) + O(x^100)) \\ Colin Barker, Oct 16 2015

CROSSREFS

Cf. A000045, A003893.

Sequence in context: A237836 A231324 A274557 * A349688 A273124 A349686

Adjacent sequences:  A072707 A072708 A072709 * A072711 A072712 A072713

KEYWORD

nonn,base,easy

AUTHOR

Benoit Cloitre, Aug 07 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 00:04 EST 2021. Contains 349590 sequences. (Running on oeis4.)