login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numerators of coefficients of Green function for cubic lattice.
(Formerly M4331)
3

%I M4331 #16 Aug 06 2017 22:46:29

%S 0,1,7,5,3635,557485,7596391,19681954039,32139541115,11613832153165,

%T 3386240626860905,2153823021586357,11330361348611303,

%U 9397464146366084237,9528720716522267278849,309116925259099828695359

%N Numerators of coefficients of Green function for cubic lattice.

%D G. S. Joyce, The simple cubic lattice Green function, Phil. Trans. Roy. Soc., 273 (1972), 583-610.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%F 36*n*(n+1)*(2*n+1)*a(n+1)-4*n*(20*n^2+1)*a(n)+(2*n-1)^3*a(n+1) = 0. - _R. J. Mathar_, Dec 08 2005

%p Dnminus1 := 1 : print(numer(Dnminus1)) ; Dn := 7/18 : print(numer(Dn)) ; n := 2 : for nplus1 from 3 to 20 do n := nplus1-1 : Dnplus1 := (4*n*(20*n^2+1)*Dn-(2*n-1)^3*Dnminus1)/(36*n*nplus1*(2*n+1)) : print(numer(Dnplus1)) ; Dnminus1 := Dn : Dn := Dnplus1 : od : # _R. J. Mathar_

%Y Cf. A003300.

%K nonn,easy,frac

%O 0,3

%A _N. J. A. Sloane_

%E More terms from _R. J. Mathar_, Dec 08 2005