login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003298 Denominators of coefficients of Green function for cubic lattice.
(Formerly M5063)
2
1, 18, 648, 2160, 1399680, 75582720, 149653785600, 2693768140800, 8620058050560, 7913213290414080, 284875678454906880, 25638811060941619200, 155678860762037511782400, 112088779748667008483328 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
REFERENCES
G. S. Joyce, The simple cubic lattice Green function, Phil. Trans. Roy. Soc., 273 (1972), 583-610.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
Recurrence for the fraction A003284(n)/A003298(n) is the same as for A003299(n)/A003300(n). - R. J. Mathar, Dec 08 2005
36*n*(n+1)*(2n+1)*A003284(n+1)/a(n+1)-4n*(20n^2+1)*A003284(n)/a(n)+(2n-1)^3*A003284(n-1)/a(n-1) = 0. - R. J. Mathar, Dec 08 2005
MAPLE
Dnminus1 := 1 : print(denom(Dnminus1)) ; Dn := 1/18 : print(denom(Dn)) ; for nplus1 from 2 to 20 do n := nplus1-1 : Dnplus1 := (4*n*(20*n^2+1)*Dn-(2*n-1)^3*Dnminus1)/(36*n*nplus1*(2*n+1)) : print(denom(Dnplus1)) ; Dnminus1 := Dn : Dn := Dnplus1 : od : # R. J. Mathar
CROSSREFS
Cf. A003284.
Sequence in context: A281559 A166767 A322889 * A049869 A041615 A041612
KEYWORD
nonn,easy,frac
AUTHOR
EXTENSIONS
More terms from R. J. Mathar, Dec 08 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 13:48 EST 2023. Contains 367563 sequences. (Running on oeis4.)