|
|
A041612
|
|
Numerators of continued fraction convergents to sqrt(325).
|
|
2
|
|
|
18, 649, 23382, 842401, 30349818, 1093435849, 39394040382, 1419278889601, 51133434066018, 1842222905266249, 66371158023650982, 2391203911756701601, 86149711981264908618, 3103780835237293411849, 111822259780523827735182, 4028705132934095091878401
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (36,1).
|
|
FORMULA
|
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 36*a(n-1) + a(n-2), n > 1; a(0)=18, a(1)=649.
G.f.: (18+x)/(1-36*x-x^2). (End)
a(n) = 9*((18+5*sqrt(13))^n + (18-5*sqrt(13))^n) + (5/2)*sqrt(13)*((18+5*sqrt(13))^n - (18-5*sqrt(13))^n), with n >= 0. - Paolo P. Lava, Nov 28 2008
|
|
MATHEMATICA
|
Numerator[Convergents[Sqrt[325], 30]] (* Vincenzo Librandi, Nov 04 2013 *)
|
|
CROSSREFS
|
Cf. A041613.
Sequence in context: A003298 A049869 A041615 * A046674 A073421 A346216
Adjacent sequences: A041609 A041610 A041611 * A041613 A041614 A041615
|
|
KEYWORD
|
nonn,cofr,frac,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
Additional term from Colin Barker, Nov 09 2013
|
|
STATUS
|
approved
|
|
|
|