login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A317806
Number of set partitions of [k] into 4 blocks with equal element sum, where k is the n-th positive integer that allows such a partition.
1
1, 1, 871, 2650, 9462094, 31650271, 171019406993, 595828948333, 4107584704538352, 14702365152800667, 118513210888679225825, 432046935173440593804, 3881432331405193485285518, 14337098117309087488187476, 139477762791757859249400365738, 520312171172086830267314753894
OFFSET
1,3
COMMENTS
k = 7, 8, 15, 16, 23, ... A047521(n+1) for n = 1, 2, 3, 4, 5, ... .
FORMULA
a(n) = A275714(A047521(n+1),4).
EXAMPLE
a(1) = 1: 16|25|34|7 with k = 7.
a(2) = 1: 18|27|36|45 with k = 8.
MAPLE
b:= proc() option remember; local i, j, t; `if`(args[1]=0,
`if`(nargs=2, 1, b(args[t] $t=2..nargs)), add(
`if`(args[j] -args[nargs]<0, 0, b(sort([seq(args[i]-
`if`(i=j, args[nargs], 0), i=1..nargs-1)])[],
args[nargs]-1)), j=1..nargs-1))
end:
a:= proc(n) option remember; (k-> (m->
b((m/4)$4, k)/24)(k*(k+1)/2))(4*n+3/2*(1-(-1)^n))
end:
seq(a(n), n=1..8);
CROSSREFS
Sequence in context: A206172 A205426 A035855 * A031783 A253167 A214285
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 07 2018
STATUS
approved