The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317807 Number of set partitions of [k] into 5 blocks with equal element sum, where k is the n-th positive integer that allows such a partition. 2
 1, 1, 68, 187, 27763, 108516, 25958279, 100664383, 26388943467, 109026138857, 33100108402861, 139752234469078, 46498731704890104, 200612215343574676, 71799817534098086846, 314741192906319529056 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS k = 9, 10, 14, 15, 19, ... A047208(n+3) for n = 1, 2, 3, 4, 5, ... . LINKS Table of n, a(n) for n=1..16. Wikipedia, Partition of a set FORMULA a(n) = A275714(A047208(n+3),5). EXAMPLE a(1) = 1: 18|27|36|45|9 with k = 9. a(2) = 1: 1(10)|29|38|47|56 with k = 10. MAPLE b:= proc() option remember; local i, j, t; `if`(args[1]=0, `if`(nargs=2, 1, b(args[t] \$t=2..nargs)), add( `if`(args[j] -args[nargs]<0, 0, b(sort([seq(args[i]- `if`(i=j, args[nargs], 0), i=1..nargs-1)])[], args[nargs]-1)), j=1..nargs-1)) end: a:= proc(n) option remember; (k-> (m-> b((m/5)\$5, k)/5!)(k*(k+1)/2))(5+5*n/2+3/4*(1-(-1)^n)) end: seq(a(n), n=1..8); MATHEMATICA b[args_List] := b[args] = Module[{nargs = Length[args]}, If[args[[1]] == 0, If[nargs == 3, 1, b[args // Rest]], Sum[If[args[[j]] - Last[args] < 0, 0, b[Append[Sort[Flatten[Table[args[[i]] - If[i == j, Last[args], 0], {i, 1, nargs - 1}]]], Last[args] - 1]]], {j, 1, nargs - 1}]]]; a[n_] := a[n] = Function[k, Function[m, b[Append[Table[m/5, {5}], k]]/5!][k (k + 1)/2]][5 + 5n/2 + (3/4)(1 - (-1)^n)]; Table[Print[n, " ", a[n]]; a[n], {n, 1, 12}] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *) CROSSREFS Cf. A047208, A275714. Sequence in context: A256023 A044400 A044781 * A292344 A189810 A200198 Adjacent sequences: A317804 A317805 A317806 * A317808 A317809 A317810 KEYWORD nonn AUTHOR Alois P. Heinz, Aug 07 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 19:52 EDT 2024. Contains 373360 sequences. (Running on oeis4.)