The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292344 The first Zagreb index of the Aztec diamond AZ(n) (see the Ramanes et al. reference, Theorem 2.1). 3
68, 212, 420, 692, 1028, 1428, 1892, 2420, 3012, 3668, 4388, 5172, 6020, 6932, 7908, 8948, 10052, 11220, 12452, 13748, 15108, 16532, 18020, 19572, 21188, 22868, 24612, 26420, 28292, 30228, 32228, 34292, 36420, 38612, 40868, 43188, 45572, 48020, 50532, 53108 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i)+ d(j) over all edges ij of the graph.
The M-polynomial of the Aztec diamond AZ(n) is M(AZ(n);x,y) = 8*x^2*y^3 + 8*(n-1)*x^2*y^4 + 4*x^3*y^4 + 4*(n^2 - 1)*x^4*y^4. - Emeric Deutsch, May 10 2018
REFERENCES
M. Imran and S. Hayat, On computation of topological indices of Aztec diamonds, Sci. Int. (Lahore), 26 (4), 1407-1412, 2014.
H. S. Ramanes and R. B. Jummannaver, Computation of Zagreb indices and forgotten index of Aztec diamond, Aryabhatta J. Math. and Informatics, Vol. 09, No. 01, 619-627, 2017.
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
FORMULA
a(n) = 32*n^2 + 48*n - 12.
G.f.: 4*x*(17+2*x-3*x^2)/(1-x)^3. - Vincenzo Librandi, Sep 24 2017
EXAMPLE
a(1) = 68; indeed, the Aztec diamond AZ(1) has 4 vertices of degree 2, 4 vertices of degree 3, and 1 vertex of degree 4 (see p. 1409 of the Imran et al. reference); consequently, a(1) = 4*2^2 + 4*3^2 + 1*4^2 = 16 + 36 + 16 = 68.
MAPLE
a:= proc(n) options operator, arrow: 32*n^2+48*n-12 end proc: seq(a(n), n = 1 .. 40);
MATHEMATICA
Table[32 n^2 + 48 n - 12, {n, 40}] (* Michael De Vlieger, Sep 23 2017 *)
CoefficientList[Series[4 (17 + 2 x - 3 x^2) / (1-x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Sep 24 2017 *)
PROG
(Magma) [32*n^2+48*n-12: n in [1..40]]; // Vincenzo Librandi, Sep 24 2017
(GAP) List([1..50], n->32*n^2+48*n-12); # Muniru A Asiru, May 10 2018
(PARI) a(n) = 32*n^2+48*n-12; \\ Altug Alkan, May 10 2018
CROSSREFS
Cf. A292345.
Sequence in context: A044400 A044781 A317807 * A189810 A200198 A237745
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Sep 23 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 21:52 EDT 2024. Contains 372882 sequences. (Running on oeis4.)