OFFSET
1,1
COMMENTS
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i)+ d(j) over all edges ij of the graph.
The M-polynomial of the Aztec diamond AZ(n) is M(AZ(n);x,y) = 8*x^2*y^3 + 8*(n-1)*x^2*y^4 + 4*x^3*y^4 + 4*(n^2 - 1)*x^4*y^4. - Emeric Deutsch, May 10 2018
REFERENCES
M. Imran and S. Hayat, On computation of topological indices of Aztec diamonds, Sci. Int. (Lahore), 26 (4), 1407-1412, 2014.
H. S. Ramanes and R. B. Jummannaver, Computation of Zagreb indices and forgotten index of Aztec diamond, Aryabhatta J. Math. and Informatics, Vol. 09, No. 01, 619-627, 2017.
LINKS
Muniru A Asiru, Table of n, a(n) for n = 1..2000
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 32*n^2 + 48*n - 12.
G.f.: 4*x*(17+2*x-3*x^2)/(1-x)^3. - Vincenzo Librandi, Sep 24 2017
EXAMPLE
a(1) = 68; indeed, the Aztec diamond AZ(1) has 4 vertices of degree 2, 4 vertices of degree 3, and 1 vertex of degree 4 (see p. 1409 of the Imran et al. reference); consequently, a(1) = 4*2^2 + 4*3^2 + 1*4^2 = 16 + 36 + 16 = 68.
MAPLE
a:= proc(n) options operator, arrow: 32*n^2+48*n-12 end proc: seq(a(n), n = 1 .. 40);
MATHEMATICA
Table[32 n^2 + 48 n - 12, {n, 40}] (* Michael De Vlieger, Sep 23 2017 *)
CoefficientList[Series[4 (17 + 2 x - 3 x^2) / (1-x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Sep 24 2017 *)
PROG
(Magma) [32*n^2+48*n-12: n in [1..40]]; // Vincenzo Librandi, Sep 24 2017
(GAP) List([1..50], n->32*n^2+48*n-12); # Muniru A Asiru, May 10 2018
(PARI) a(n) = 32*n^2+48*n-12; \\ Altug Alkan, May 10 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Sep 23 2017
STATUS
approved