login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292344 The first Zagreb index of the Aztec diamond AZ(n) (see the Ramanes et al. reference, Theorem 2.1). 3
68, 212, 420, 692, 1028, 1428, 1892, 2420, 3012, 3668, 4388, 5172, 6020, 6932, 7908, 8948, 10052, 11220, 12452, 13748, 15108, 16532, 18020, 19572, 21188, 22868, 24612, 26420, 28292, 30228, 32228, 34292, 36420, 38612, 40868, 43188, 45572, 48020, 50532, 53108 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i)+ d(j) over all edges ij of the graph.

The M-polynomial of the Aztec diamond AZ(n) is M(AZ(n);x,y) = 8*x^2*y^3 + 8*(n-1)*x^2*y^4 + 4*x^3*y^4 + 4*(n^2 - 1)*x^4*y^4. - Emeric Deutsch, May 10 2018

REFERENCES

M. Imran and S. Hayat, On computation of topological indices of Aztec diamonds, Sci. Int. (Lahore), 26 (4), 1407-1412, 2014.

H. S. Ramanes and R. B. Jummannaver, Computation of Zagreb indices and forgotten index of Aztec diamond, Aryabhatta J. Math. and Informatics, Vol. 09, No. 01, 619-627, 2017.

LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..2000

E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 32*n^2 + 48*n - 12.

G.f.: 4*x*(17+2*x-3*x^2)/(1-x)^3. - Vincenzo Librandi, Sep 24 2017

EXAMPLE

a(1) = 68; indeed, the Aztec diamond AZ(1) has 4 vertices of degree 2, 4 vertices of degree 3, and 1 vertex of degree 4 (see p. 1409 of the Imran et al. reference); consequently, a(1) = 4*2^2 + 4*3^2 + 1*4^2 = 16 + 36 + 16 = 68.

MAPLE

a:= proc(n) options operator, arrow: 32*n^2+48*n-12 end proc: seq(a(n), n = 1 .. 40);

MATHEMATICA

Table[32 n^2 + 48 n - 12, {n, 40}] (* Michael De Vlieger, Sep 23 2017 *)

CoefficientList[Series[4 (17 + 2 x - 3 x^2) / (1-x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Sep 24 2017 *)

PROG

(MAGMA) [32*n^2+48*n-12: n in [1..40]]; // Vincenzo Librandi, Sep 24 2017

(GAP) List([1..50], n->32*n^2+48*n-12); # Muniru A Asiru, May 10 2018

(PARI) a(n) = 32*n^2+48*n-12; \\ Altug Alkan, May 10 2018

CROSSREFS

Cf. A292345.

Sequence in context: A044400 A044781 A317807 * A189810 A200198 A237745

Adjacent sequences:  A292341 A292342 A292343 * A292345 A292346 A292347

KEYWORD

nonn,easy

AUTHOR

Emeric Deutsch, Sep 23 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 12 16:32 EDT 2022. Contains 356077 sequences. (Running on oeis4.)