login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292347
Möbius function of absolute order.
1
1, 0, 2, 16, 192, 3008, 58480, 1360896, 36931328, 1145967616, 40040976384, 1556236513280, 66610814414848, 3113899625938944, 157874306413611008, 8629070019375726592, 505841319779582607360, 31659277087340088786944, 2107162955059322401718272
OFFSET
1,3
COMMENTS
(-1)^{n-1} a(n) is the Möbius function value mu(0,1) of the absolute order on the symmetric group S_n with a top element 1 adjoined.
REFERENCES
R. Stanley, Enumerative Combinatorics, vol. 1, second ed., Cambridge University Press (2012), Exercise 3.159.
LINKS
FORMULA
The exponential generating function for (-1)^{n-1} a(n) is exp(Sum_{p>=1} C(p-1) * x^p/p) = (-1+sqrt(1+4*x))*exp(-1+sqrt(1+4*x))/(2*x), where C(p-1) is a Catalan number.
MAPLE
a:= n-> n! * abs(coeff(series((sqrt(1+4*x)-1)*
exp(sqrt(1+4*x)-1)/(2*x), x, n+3), x, n)):
seq(a(n), n=1..25); # Alois P. Heinz, Dec 08 2017
CROSSREFS
Sequence in context: A183205 A006335 A273591 * A051711 A274448 A209586
KEYWORD
nonn
AUTHOR
Richard Stanley, Dec 07 2017
STATUS
approved