|
|
A006335
|
|
a(n) = 4^n*(3*n)!/((n+1)!*(2*n+1)!).
(Formerly M2094)
|
|
12
|
|
|
1, 2, 16, 192, 2816, 46592, 835584, 15876096, 315031552, 6466437120, 136383037440, 2941129850880, 64614360416256, 1442028424527872, 32619677465182208, 746569714888605696, 17262927525017812992, 402801642250415636480, 9474719710174783733760, 224477974671833337692160
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Number of planar lattice walks of length 3n starting and ending at (0,0), remaining in the first quadrant and using only NE,W,S steps.
Number of linear extensions of the poset V x [n], where V is the 3-element poset with one least element and two incomparable elements: see Kreweras and Niederhausen (1981) and Hopkins and Rubey (2020) references. - Noam Zeilberger, May 28 2020
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1/(12*x)) * (hypergeom([ -2/3, -1/3],[1/2],27*x)-1). - Mark van Hoeij, Nov 02 2009
a(n+1) = 6*(3*n+2)*(3*n+1)*a(n)/((2+n)*(2*n+3)). - Robert Israel, Nov 17 2014
|
|
EXAMPLE
|
G.f. = 1 + 2*x + 16*x^2 + 192*x^3 + 2816*x^4+ 46592*x^5 + 835584*x^6 + ...
|
|
MAPLE
|
|
|
MATHEMATICA
|
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, 3 n], {n, 0, 25}] (* Manuel Kauers, Nov 18 2008 *)
Table[(4^n (3 n)! / ((n + 1)! (2 n + 1)!)), {n, 0, 200}] (* Vincenzo Librandi, Nov 17 2014 *)
|
|
PROG
|
(PARI) {a(n) = if( n<0, 0, 4^n * (3*n)! / ((n+1)! * (2*n+1)!))}; /* Michael Somos, Jan 23 2003 */
(Magma) [4^n*Factorial(3*n)/(Factorial(n+1)*Factorial(2*n+1)) : n in [0..20]]; // Wesley Ivan Hurt, Nov 16 2014
(Sage)
def a(n):
return (4**n * binomial(3 * n, 2 * n)) // ((n + 1) * (2 * n + 1))
|
|
CROSSREFS
|
Equals 2^(n-1) * A000309(n-1) for n>1.
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|