login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4^n*(3*n)!/((n+1)!*(2*n+1)!).
(Formerly M2094)
12

%I M2094 #80 Jan 07 2025 13:34:23

%S 1,2,16,192,2816,46592,835584,15876096,315031552,6466437120,

%T 136383037440,2941129850880,64614360416256,1442028424527872,

%U 32619677465182208,746569714888605696,17262927525017812992,402801642250415636480,9474719710174783733760,224477974671833337692160

%N a(n) = 4^n*(3*n)!/((n+1)!*(2*n+1)!).

%C Number of planar lattice walks of length 3n starting and ending at (0,0), remaining in the first quadrant and using only NE,W,S steps.

%C Equals row sums of triangle A140136. - _Michel Marcus_, Nov 16 2014

%C Number of linear extensions of the poset V x [n], where V is the 3-element poset with one least element and two incomparable elements: see Kreweras and Niederhausen (1981) and Hopkins and Rubey (2020) references. - _Noam Zeilberger_, May 28 2020

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H G. C. Greubel, <a href="/A006335/b006335.txt">Table of n, a(n) for n = 0..700</a>

%H Andrei Asinowski, Cyril Banderier, and Sarah J. Selkirk, <a href="https://www.mat.univie.ac.at/~slc/wpapers/FPSAC2023/30.html">From Kreweras to Gessel: A walk through patterns in the quarter plane</a>, Séminaire Lotharingien de Combinatoire, Proc. 35th Conf. Formal Power Series and Alg. Comb. (Davis, 2023) Vol. 89B, Art. #30.

%H Olivier Bernardi, <a href="https://hal.archives-ouvertes.fr/hal-00068433/document">Bijective counting of Kreweras walks and loopless triangulations</a>, Journal of Combinatorial Theory, Series A 114:5 (2007), 931-956.

%H M. Bousquet-Mélou, <a href="https://arxiv.org/abs/math/0401067">Walks in the quarter plane: Kreweras' algebraic model</a>, arXiv:math/0401067 [math.CO], 2004-2006.

%H M. Bousquet-Mélou and M. Mishna, <a href="http://arxiv.org/abs/0810.4387">Walks with small steps in the quarter plane</a>, arXiv:0810.4387 [math.CO], 2008.

%H Sam Hopkins and Martin Rubey, <a href="https://arxiv.org/abs/2005.14031">Promotion of Kreweras words</a>, arXiv:2005.14031 [math.CO], 2020.

%H G. Kreweras, <a href="http://www.numdam.org/numdam-bin/item?id=BURO_1965__6__9_0">Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers</a>, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, 6 (1965), circa p. 82.

%H G. Kreweras and H. Niederhausen, <a href="http://dx.doi.org/10.1016/S0195-6698(81)80020-0">Solution of an enumerative problem connected with lattice paths</a>, European J. Combin., 2 (1981), 55-60.

%F G.f.: (1/(12*x)) * (hypergeom([ -2/3, -1/3],[1/2],27*x)-1). - _Mark van Hoeij_, Nov 02 2009

%F a(n+1) = 6*(3*n+2)*(3*n+1)*a(n)/((2+n)*(2*n+3)). - _Robert Israel_, Nov 17 2014

%F a(n) ~ 3^(3*n + 1/2) / (4*sqrt(Pi)*n^(5/2)). - _Vaclav Kotesovec_, Mar 26 2016

%F E.g.f.: 2F2(1/3,2/3; 3/2,2; 27*x). - _Ilya Gutkovskiy_, Jan 25 2017

%e G.f. = 1 + 2*x + 16*x^2 + 192*x^3 + 2816*x^4+ 46592*x^5 + 835584*x^6 + ...

%p A006335:=n->4^n*(3*n)!/((n+1)!*(2*n+1)!): seq(A006335(n), n=0..20); # _Wesley Ivan Hurt_, Nov 16 2014

%t aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, 3 n], {n, 0, 25}] (* _Manuel Kauers_, Nov 18 2008 *)

%t Table[(4^n (3 n)! / ((n + 1)! (2 n + 1)!)), {n, 0, 200}] (* _Vincenzo Librandi_, Nov 17 2014 *)

%o (PARI) {a(n) = if( n<0, 0, 4^n * (3*n)! / ((n+1)! * (2*n+1)!))}; /* _Michael Somos_, Jan 23 2003 */

%o (Magma) [4^n*Factorial(3*n)/(Factorial(n+1)*Factorial(2*n+1)) : n in [0..20]]; // _Wesley Ivan Hurt_, Nov 16 2014

%o (Sage)

%o def a(n):

%o return (4**n * binomial(3 * n, 2 * n)) // ((n + 1) * (2 * n + 1))

%o # _F. Chapoton_, Jun 01 2020

%Y Equals 2^(n-1) * A000309(n-1) for n>1.

%Y Cf. A098272. First row of array A098273.

%Y Column of A176129, A214631, A214722, A340591.

%K nonn,easy,changed

%O 0,2

%A _N. J. A. Sloane_

%E Edited by _N. J. A. Sloane_, Dec 20 2008 at the suggestion of _R. J. Mathar_