login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A006334
From the enumeration of corners.
(Formerly M2179)
2
0, 2, 110, 2002, 20020, 136136, 705432, 2984520, 10786908, 34370050, 98768670, 260390130, 638110200, 1468635168, 3200871520, 6650874912, 13248113736, 25415833170, 47143878782, 84832157410, 148507792972, 253549890440, 423093671000, 691331713800, 1107985378500
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, 6 (1965), circa p. 82.
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
a(n) = (n*(1 + n)^2*(2 + n)^2*(3 + n)^2*(4 + n)*(1 + 2*n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n))/1360800.
G.f.: -2*x*(x+1)*(x^6 + 41*x^5 + 323*x^4 + 678*x^3 + 323*x^2 + 41*x + 1)/(x-1)^13. - Colin Barker, Sep 19 2012
MATHEMATICA
Abs@ With[{n = 5}, Table[(2 (-1)^(n + k) (n + k - 1)! (2 n + 2 k - 3)!)/(n! k! (2 n - 1)! (2 k - 1)!), {k, 0, 24}]] (* Michael De Vlieger, Mar 26 2016 *)
LinearRecurrence[{13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1}, {0, 2, 110, 2002, 20020, 136136, 705432, 2984520, 10786908, 34370050, 98768670, 260390130, 638110200}, 30] (* Harvey P. Dale, Apr 21 2016 *)
CROSSREFS
A row of A132339.
Sequence in context: A323250 A077804 A063668 * A093425 A091508 A075399
KEYWORD
nonn,easy
STATUS
approved