login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006333
From the enumeration of corners.
(Formerly M2175)
2
0, 2, 60, 660, 4290, 20020, 74256, 232560, 639540, 1586310, 3617900, 7696260, 15438150, 29451240, 53796160, 94607040, 160908264, 265670730, 427156860, 670609940, 1030350090, 1552346268, 2297341200, 3344614000, 4796473500
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, 6 (1965), circa p. 82.
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = (n*(1 + n)^2*(2 + n)^2*(3 + n)*(1 + 2*n)*(3 + 2*n)*(5 + 2*n))/7560.
G.f.: 2*(1 + 20*x + 75*x^2 + 75*x^3 + 20*x^4 + x^5)/(1-x)^10.
MATHEMATICA
Abs@ With[{n = 4}, Table[(2 (-1)^(n + k) (n + k - 1)! (2 n + 2 k - 3)!)/(n! k! (2 n - 1)! (2 k - 1)!), {k, 0, 24}]] (* or *)
{0}~Join~CoefficientList[Series[2 (1 + 20 x + 75 x^2 + 75 x^3 + 20 x^4 + x^5)/(1 - x)^10, {x, 0, 23}], x] (* Michael De Vlieger, Mar 26 2016 *)
LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 2, 60, 660, 4290, 20020, 74256, 232560, 639540, 1586310}, 30] (* Harvey P. Dale, Jan 01 2017 *)
PROG
(PARI) a(n) = (n*(1 + n)^2*(2 + n)^2*(3 + n)*(1 + 2*n)*(3 + 2*n)*(5 + 2*n))/7560 \\ Charles R Greathouse IV, Jul 28 2015
(PARI) x='x+O('x^99); concat(0, Vec(2*(1+20*x+75*x^2+75*x^3+20*x^4+x^5)/(1-x)^10)) \\ Altug Alkan, Mar 26 2016
CROSSREFS
A row of A132339.
Sequence in context: A067739 A187626 A059934 * A001760 A230572 A157059
KEYWORD
nonn,easy
STATUS
approved