Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2175 #31 Aug 02 2024 22:38:29
%S 0,2,60,660,4290,20020,74256,232560,639540,1586310,3617900,7696260,
%T 15438150,29451240,53796160,94607040,160908264,265670730,427156860,
%U 670609940,1030350090,1552346268,2297341200,3344614000,4796473500
%N From the enumeration of corners.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Matthew House, <a href="/A006333/b006333.txt">Table of n, a(n) for n = 0..10000</a>
%H G. Kreweras, <a href="http://www.numdam.org/numdam-bin/item?id=BURO_1965__6__9_0">Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers</a>, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, 6 (1965), circa p. 82.
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
%F a(n) = (n*(1 + n)^2*(2 + n)^2*(3 + n)*(1 + 2*n)*(3 + 2*n)*(5 + 2*n))/7560.
%F G.f.: 2*(1 + 20*x + 75*x^2 + 75*x^3 + 20*x^4 + x^5)/(1-x)^10.
%t Abs@ With[{n = 4}, Table[(2 (-1)^(n + k) (n + k - 1)! (2 n + 2 k - 3)!)/(n! k! (2 n - 1)! (2 k - 1)!), {k, 0, 24}]] (* or *)
%t {0}~Join~CoefficientList[Series[2 (1 + 20 x + 75 x^2 + 75 x^3 + 20 x^4 + x^5)/(1 - x)^10, {x, 0, 23}], x] (* _Michael De Vlieger_, Mar 26 2016 *)
%t LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,2,60,660,4290,20020,74256,232560,639540,1586310},30] (* _Harvey P. Dale_, Jan 01 2017 *)
%o (PARI) a(n) = (n*(1 + n)^2*(2 + n)^2*(3 + n)*(1 + 2*n)*(3 + 2*n)*(5 + 2*n))/7560 \\ _Charles R Greathouse IV_, Jul 28 2015
%o (PARI) x='x+O('x^99); concat(0, Vec(2*(1+20*x+75*x^2+75*x^3+20*x^4+x^5)/(1-x)^10)) \\ _Altug Alkan_, Mar 26 2016
%Y A row of A132339.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_