login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001760
Number of permutations of [n] with n-4 sequences.
(Formerly M2176 N0870)
1
2, 60, 836, 9576, 103326, 1106820, 12062152, 135391872, 1575253690, 19058801580, 240134763948, 3152151344088, 43098592576694, 613444153400340, 9082400109162224, 139747529003597424, 2232451845925297938
OFFSET
1,1
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
From Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Mar 12 2001: (Start)
E.g.f.: (1/4)u(t)^4 + u(t)^3(-1-t/2) + u(t)^2(3+t) + (-7-t/2)u(t), where u(t) = sec(t) + tan(t), n>4.
a(n) ~ n!(2/Pi)^(n + 3)/(3*Pi)(4n^3 + (24 - 3*Pi^2 - 12*Pi)n^2 + (13*Pi^2 + 44 + 3*Pi^3 - 36*Pi)n - 24*Pi + 16*Pi^2 - 9*Pi^3 + 24). (End)
MAPLE
u := t->sec(t)+tan(t); seq(i!*coeff(series((1/4)*u(t)^4+u(t)^3*(-1-t/2)+u(t)^2* (3+t)+(-7-t/2)*u(t), t, 35), t, i), i=5..24); # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Mar 12 2001
CROSSREFS
Equals (1/3)*A001759(n+1)-(1/3)*(n-2)*A001758(n)-(2/3)*A001759(n).
Sequence in context: A187626 A059934 A006333 * A230572 A157059 A272980
KEYWORD
nonn
EXTENSIONS
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Mar 12 2001
STATUS
approved