login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272980
Least k>1 such that all powers k^e, 1 <= e <= n, are divisible by the number of their divisors, d(k^e).
2
2, 60, 1056, 1260, 1441440, 551350800, 42226984800, 111924212400, 11251629148359600, 284440457440339200, 582249616380374342400, 621260340677859423340800, 621260340677859423340800, 921088919608373507667359523840000000
OFFSET
1,1
FORMULA
2 / d(2) = 2 / 2 = 1 but 2^2 / d(2^2) = 4 / 3;
60 / d(60) = 60 / 12 = 5, 60^2 / d (60^2) = 3600 / 45 = 80 but 60^3 / d(60^3) = 216000 / 112 = 13500 / 7.
MAPLE
with(numtheory): P:= proc(q) local a, j, k, ok, n, p; a:=2;
for k from 1 to q do for n from a to q do ok:=1;
for j from 1 to k do if not type(n^j/tau(n^j), integer) then ok:=0; break; fi; od;
if ok=1 then a:=n; print(n); break; fi; od; od; end: P(10^9);
MATHEMATICA
Table[SelectFirst[Range[2, 2*10^6], AllTrue[#^Range@ n, Divisible[#, DivisorSigma[0, #]] &] &], {n, 5}] (* Michael De Vlieger, May 12 2016, Version 10 *)
CROSSREFS
Sequence in context: A001760 A230572 A157059 * A222652 A227624 A199643
KEYWORD
nonn
AUTHOR
Paolo P. Lava, May 12 2016
EXTENSIONS
a(6)-a(14) from Giovanni Resta, May 12 2016
STATUS
approved