login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A323250
Sequence lists numbers k > 1 such that k^3 == d(k) (mod sigma(k)), where d = A000005 and sigma = A000203.
2
2, 110, 152, 506, 830, 882, 8138, 13826, 15878, 19514, 37634, 93242, 99002, 153216, 218978, 576902, 998978, 2259758, 3041798, 5326106, 6654278, 7709006, 7772762, 31833002, 44564438, 106657202, 279422306, 1702668664, 1774448104, 2132364366, 3932536504, 3966201002, 4954728904
OFFSET
1,1
COMMENTS
From Jinyuan Wang, Feb 03 2019: (Start)
Conjecture: All terms are even.
a(34) > 5*10^9. (End)
FORMULA
Solutions of k^3 mod sigma(k) = d(k).
EXAMPLE
sigma(2) = 3 and 2^3 mod 3 = 2 = d(2).
MAPLE
with(numtheory): op(select(n->n^3 mod sigma(n)=tau(n), [$1..7772762]));
MATHEMATICA
Select[Range[10^8], PowerMod[#1, 3, #3] == #2 & @@ Prepend[DivisorSigma[{0, 1}, #], #] &] (* Michael De Vlieger, Jan 18 2019 *)
PROG
(PARI) for(k=1, 10^8, x=sigma(k); if(Mod(k, x)^3==Mod(numdiv(k), x), print1(k, ", "))) \\ Jinyuan Wang, Feb 02 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jan 08 2019
EXTENSIONS
a(24)-a(25) from Michael De Vlieger, Jan 18 2019
a(26)-a(33) from Jinyuan Wang, Feb 02 2019
STATUS
approved